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INTRODUCTION & AIMS

* Pulmonary hypertension (PH) is
characterized by a mean pulmonary
arterial (PA) pressure greater than 20
mmHg. The inability of the right ventricle
to adaptively remodel drives disease.

* Pressure-volume loops are the gold
standard for assessing RV remodeling
and are far superior to conventional
measurements. However, this procedure
IS not routinely performed.

* Aim 1. Apply unsupervised clustering to
conventional right heart catheterization
(RHC) and magnetic resonance
imaging (MRI) data to define distinct

patient groups.

* AIm 2. Determine emergent metabolic
phenotypes of these patient groups.

* Aim 3. Develop a classifier that can
map conventional measurements to
PV-loop groups.
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Figure 1. The PVDOMICs dataset was used to accomplish
Aims 1 and 2. This dataset contains RHC, MRI, and
metabolomic data for 1195 patients. For each RHC and MRI
data subset, features and patients were filtered for missing-
ness. Dimensionality reduction and unsupervised k-means
clustering were performed to identify distinct groups.

AIM 3

RHC rest | RHC exercise | M

Logistic regression 0.84 0.74

Random forest 0.88 0.76

XGBoost 0.79 0.72

Figure 2. The CALIPSO (102 subjects) dataset was used for
Aim 3. PV-loop data were clustered into three groups with differ-
ent survival outcomes. Classifiers were trained to predict
PV-loop cluster using conventional measurements and AUCs
are reported above. Using all features yielded the best results.

We applied unsupervised clustering to devise a new
paradigm for pulmonary hypertension risk stratifcation.
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Figure 3. Unsupervised clustering of RHC rest, RHC exercise, and MRI data stratify patients into groups with distinct survival outcomes. (A) The sankey diagram describes how progres-
sive measurements further stratify patients into distinct risk groups. (B) Survival v. time curves for each data subset. * = p < 0.05 for log-rank test. (C) Key features for that describe each risk group for
each data subset (mPAP: Mean pulmonary arterial pressure (mmHg), PCW: Pulmonary capillary wedge pressure (mmHg), CO: Cardiac output (L/min), RVM: Right ventricle mass (g), RVEDV: Right
ventricular end diastolic volume (L), RVESV: Right ventricular end systolic volume) (L). (D) Metabolite set enrichment analysis shows differentially expressed metabolic pathways between clusters.

We developed a classifier that can predict pressure-volume states
based on conventional measurements.
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Figure 4. Training and validation of a random forest classifier to predict _LVE_DV
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