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The timing of patient liberation from ventilatory support is

critical to avoid complications and reduce healthcare costs.

Models that accurately predict independence from

mechanical ventilation would be pivotal in supporting

clinician’s informed decision-making, improving patient

outcomes upon extubation, and decreasing ICU

expenditures.

DATASET

MODEL PERFORMANCE FEATURE IMPORTANCE

METHOD

• Inclusion/exclusion criteria

• Data Imputation and cleaning

• Sliding window definition

Aim 1: Data Preprocessing

• Predict whether the patient will have an extubation 
success or failure based on the status

Aim 2: Liberation Prediction

• Predict whether the patient can be extubated within a 
week based on 6-hour sliding window

• Predict whether the patient can be extubated within 
which quantile time range

Aim 3: Duration Prediction

⚫ 9781 patients with multiple 6-hour observation windows were

pulled from the Precision Medicine Analytics Platform (PMAP)

Dataset feature summary is shown below.

• Heterogenous data of multiple modalities: demographic, vital

measurements, lab results, and medical history

• Predominantly consists of overweight, geriatric, white males

with circulatory issues and cystic fibrosis
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Table 1: Feature summary table

Figure 4: SHAP Analysis on binary prediction of 

extubation time

Machine Learning Models Deep Learning Models

XGBoost Logistics Random Forest CNN LSTM RNN Transformer

ROC-AUC 0.8631 0.8357 0.8179 0.8336 0.7598 0.8325 0.8215

PR-AUC 0.8657 0.8483 0.8363 0.8336 0.75.98 0.8325 0.8215

F1 0.8203 0.7851 0.7707 0.7816 0.74.52 0.7573 0.7666

NPV 0.8062 0.7609 0.7480 0.7480 0.7052 0.7014 0.7120

Figure 1: Model Comparison

Figure 2: PR Curves

CONCLUSION

Table 2: Model Comparison with respect of AU-ROC, AU-PR, F1, NPV scores on Binary 

Figure 3: ROC Curves

Figure 5: SHAP Analysis on quantile prediction of 

extubation time

25353 total ICU patients with 
mechanical ventilation record in PMAP

3640 patients deceased 
while during ICU stay

21713 patients alive at 
the end of ICU stay

2033 patients missing 
some type of static 

record

19680 patients with full 
static record

14263 patients with both 
static demographic 

information recorded

5417 patients missing 
more than 60% of 
dynamic record

Data Imputation & Cleaning Details

1. Data Imputation
Used KNN imputation with k = 10
2. Selecting successfully extubated 
patients
Patients successfully extubated if 
they were not reintubated with 72 
hours of the extubation event
3. Data Cleaning
Removed erroneous values,
extreme outliers, etc. from the data

Data Imputation &

Data Cleaning

9781 patients In total
Train: Validation: Test = 
7825:978:978 patients

Apply 6-hour
observation 
window to 

each patient

Final Dataset 21985 windows
Train: Validation: Test =

17709:1978:2298 windows

Discretize the continuous extubation 
time into quantiles for binary 

classification
Used SMOTE for class imbalance

Model Details

Machine Learning Models:
• Logistic Regression (LR)
• RF
• XGBoost
Deep Learning Models:
• Transformer
• Recurrent Neural Network (RNN)
• Long Short-Term Memory 

Network (LSTM)
• Convolutional Neural 

Network (CNN)

Apply Machine learning  & Deep 
Learning Models

Hyper parameter 
Finetuning based on 

the train and 
validation data set 

Use F1, AU-ROC, 
AU-PR, and NPV to 
evaluate the model 
on the test data set

SHAP Analysis
To extract the most 
important feature 
with aim to help 
with the clinical 

decision

F1 score 

Extubation

Range 

Machine Learning Models Deep Learning Models

XGBoost Logistics Random Forest CNN LSTM RNN Transformer

[0-72) 0.5313 0.5204 0.5087 0.5322 0.5209 0.4878 0.5225

[72-168) 0.4850 0.4626 0.4499 0.4610 0.4650 0.4510 0.4740

[168-336) 0.3395 0.3397 0.3028 0.2782 0.3139 0.4186 0.3105

[336,inf) 0.4402 0.4434 0.3794 0.3599 0.3612 0.4912 0.3924

Table 3: Model Comparison with respect F1 scores on Quantile Classification

⚫ We created the data set from PMAP for the prediction of patient’s extubation time using 6-hour observation

window, which consists of 9781 patients with multiple features.

⚫ We compared 3 machine learning models and 4 deep learning models on the data set and found XGBoost

performed the best on both binary and quantile prediction.

⚫ We conducted SHAP analysis using the trained XGBoost model. We found that lab data is highly

relevant to the prediction of extubation time in addition to vital data like blood pressure and Glasgow coma

scale. We found platelets in blood, ratio of nucleated erythrocytes to 100 leukocytes, and erythrocyte

distribution width are the top 3 most important features in the prediction of extubation time.

⚫ Future work can be done in creating a classifier that outputs a continuous time-forecast for the end of a

mechanical ventilation instance.

The top three critical features in lab data according to the SHAP analysis were platelets in blood, nucleated

erythrocyte/100 leukocytes ratio, and erythrocyte distribution width. Several studies have found that

platelets and erythrocytes may serve as biomarkers to predict extubation time or respiratory failure in the ICU,

which is consistent with our findings [1-5].
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