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Conclusions

Vision Tasks

• Forests have empirically dominated tabular data 
scenarios, where the relative position of features is 
irrelevant.

• In contrast, networks typically dominate other methods 
on large sample size structured data scenarios, where the 
relative position of features is key for sample 
identification.

• The relationship between the internal representations 
that the two approaches learn has not yet been made 
explicit, to our knowledge

• We illustrate the conceptual commonalities of their 
representations on three different classification tasks.

• Three models were tested for the tabular data: Random-
forest (by  xgboost), GBDT (by xgboost), and TabNet [5], 
which is a high-performance and interpretable canonical 
deep tabular data learning architecture. 

• After the hyper-parameters of all models were tuned on a 
validation set, the models were trained and then tested on 
a held-out test set. 

• This evaluation was performed on different samples sizes 
of a large number of real-world datasets, each with unique 
properties and features. For each model, the Expected 
calibration error (ECE) as well as Cohen’s Kappa were 
calculated. The training time was measured as well.

• As for the current results,  while the training time of the 
TabNet network was significantly higher than that of the 
other models, its performance, with respect to both ECE 
and Cohen’s Kappa, was better as well. For all models – the 
generalization ability has increased as the number of 
samples increased. 
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Figure 6: Cohen’s Kappa results for random forest. Each bright 
curve is the result on one data set, samples across several sample 

size. The black curve is the average performance

Fig 1: Representations of forests (left) and networks (right)

Fig 2: Visualizations of the polytope compositions for networks (left) and 
forests (right)

Tabular Tasks

• We experimented with multi-class classifications on the 
CIFAR 10 & CIFAR 100 datasets using 1-layer, 2-layer, 5-layer 
CNNs, pretrained ResNet-18, and Random forests.

• The 3-class and 8-class training sets are from the CIFAR-10 
and the 90- class training sets from the CIFAR-100 dataset

• Final metrics reported were Cohen’s Kappa and Expected 
calibration error.

Audition Tasks

• We performed benchmarks on the FSD Kaggle 18K dataset 
using the same models as Vision tasks.

• Various sample sizes and training sample combinations 
were selected during model training.

• To preprocess the auditory files for networks, we used the 
short-time Fourier transform to convert the 8 kHz raw 
auditory signals into mel-spectrograms

• The final metrics reported were Cohen’s Kappa and 
Expected calibration error (ECE)

Fig 4: Performance of forests and networks on multiclass 
FSDKaggle18 classifications using mel-spectrograms

Fig 3: Performance of forests and networks on multiclass CIFAR 10 classifications. 
The left two columns use CIFAR-10, while the rightmost uses CIFAR-100

Tuning hyper-parameters 
using Bayesian Optimization

• With increasing problem complexity, tuning parameters of 
algorithms is time-consuming and usually employs too 
many evaluations.

• Factorial based optimization such as grid search or global 
optimization techniques such as DIRECT or genetic 
algorithms become impractical.

• Bayesian optimization allows a smarter way to tune 
parameters by building a smooth surrogate model of the 
objective function.

• We perform hyper-parameter tuning for vision and 
audition for maximizing accuracy during each trial.

• After tuning, the best parameter sets were used to retrain 
the models from scratch and classify on the test data. 

Parameters Range

Learning rate 10-6 – 0.4

Momentum 0 – 1

Epochs 15 – 40

Optimizer SGD , Adam

Fig 5: Table of parameters and their ranges that have been used 
for Bayesian hyper-parameter optimization 
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Figure 7: Training times with confidence intervals for the 3 tabular 
data models. The training time for TabNet (DN) was much higher 

than that of the other models, especially in large sample size

• In this study we compared the performance of three types 
of models, random forests, gradient boosting, and deep 
neural networks, on three types of tasks—vision, audition, 
and tabular.

• For the vision tasks, the performance decreased for all 
models as the number of classes increased. In general, the 
accuracy of all models improved as the number of training 
samples increased. The wall time of random forest was 
much lower than the corresponding times of the other 
checked models.

• For the audition tasks, the performance of different models 
highly depended on the number of training samples, and 
the variance of the Cohen’s Kappa metric, over different 
dataset, was high for each of the models. For 3 classes, RF 
and CNN-2L reached similar performance and 
outperformed the other models for all sizes of training 
data. However, in the case of 8 classes, the CNN-5L 
outperformed the other models for small training sample 
sizes and RF outperformed the other models for higher 
training sample sizes.

• For the tabular data, the training times of the DN were 
much higher than the training time of GBDT and RF. For all 
models, as the number of training sample sizes increases, 
both the ECE and Cohen's Kappa metric increases.

• We hope that our results will lead to a better 
understanding of the mechanisms according to which a 
model excels on one type of data and not on the other. This 
way, we will be able to use different models in a more 
efficient and effective manner, thus improving performance 
and interpretability. 


