

BIOENGINEERING EINNOVATION B8DESIGN

K. Detels¹; M. Hoopes¹; N. Mohseni¹; D. Shumeyko¹; R. Verma¹; J. Shuff¹; K. Parikh, PhD^{1,2}; N. Shekhawat, MD²

The Problem

Lack of access to eye care globally leads to a high prevalence loss

- 161 million cases of visual impairment in India alone
- 80% of cases are preventable
- Current outreach efforts only reach 20% of patients in need of ca individuals without access to eye care

Barriers to Eye Care Access:

- Lack of trained ophthalmologists (1:91,000)
- Efforts are limited by geographical location and high costs of cur
- Patients do not have consistent touch points and integration with
- Lack of awareness in remote communities

Proposed Solution

Visilant: An integrated, end-to-end patient outreach & (system optimized to serve eye care systems in low-to-mic Collaboration with Aravind Eye Hospital

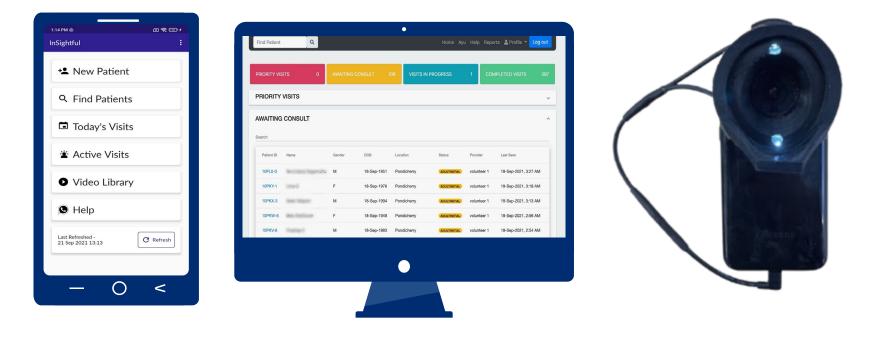
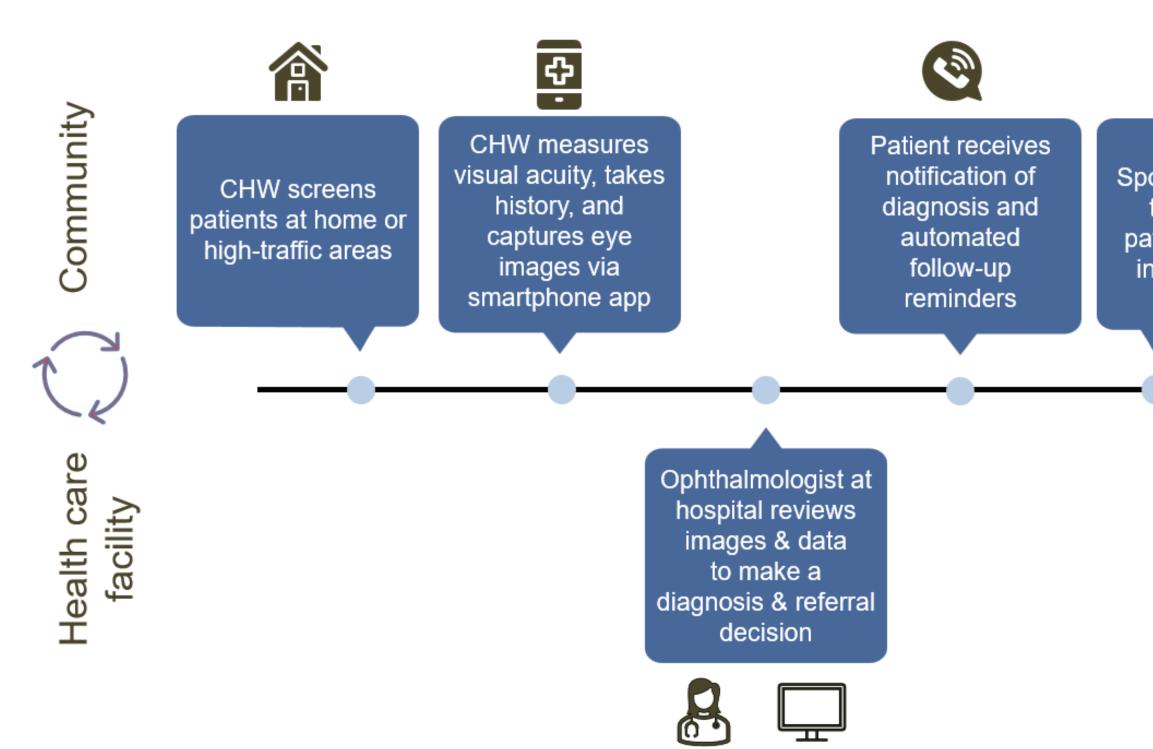
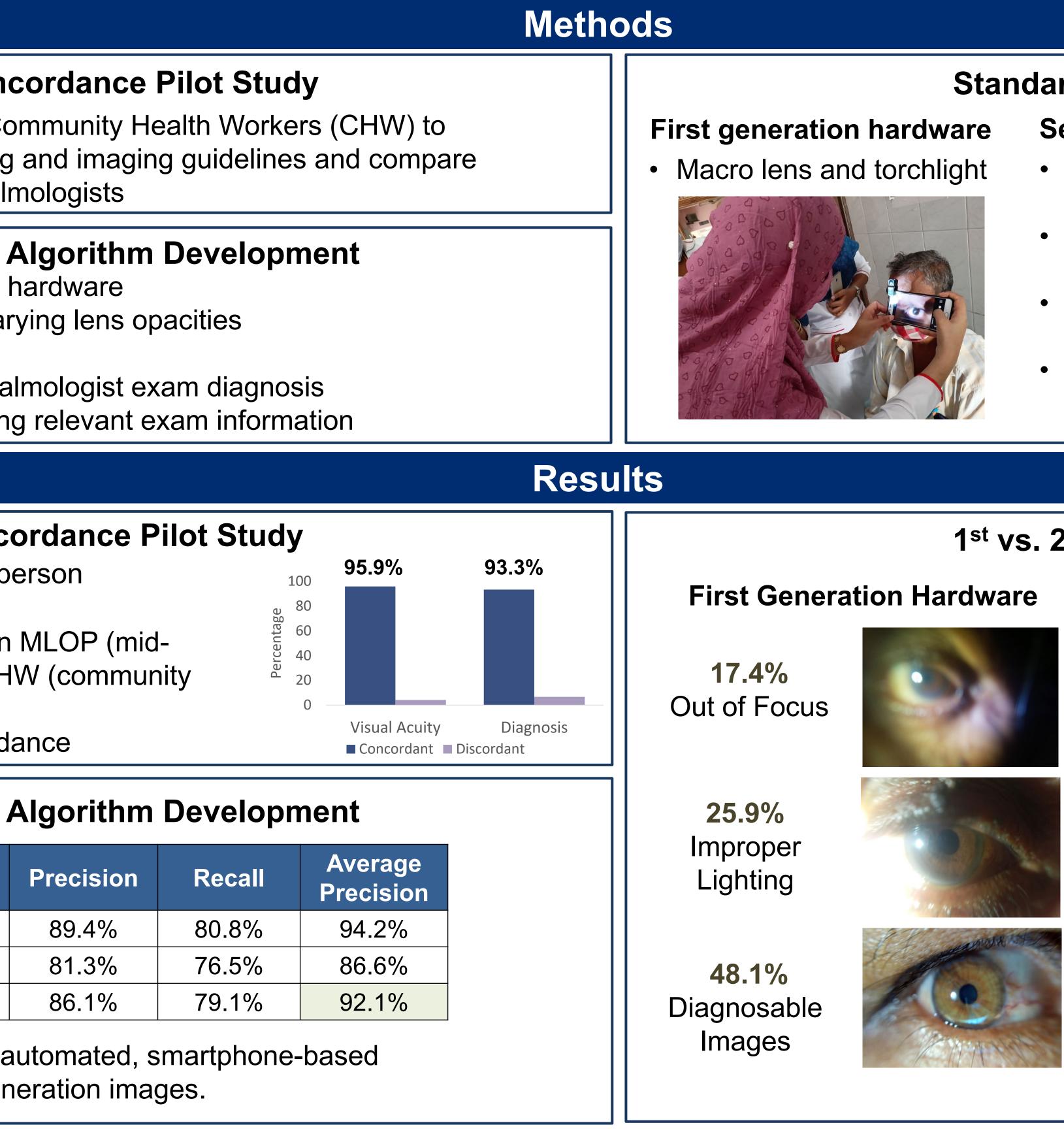



Figure 1. Visilant's system for community screening co bandwidth mobile app for data collection/transfer, clinic standardized image capture, and algorithm for real tim

Figure 2. Visilant's community-based model for decentralized eye screening integrates communities into healthcare facilities

Visilant: Increasing Access to Eye Care through Community-Based Telemedicine


¹Center for Bioengineering Innovation & Design, Johns Hopkins University kins University School of Medicine

	² Wilmer Eye Institute, Johns Hopki
e of preventable vision care, leaving 130 million	Diagnostic Conc Undergoing steps to compare ability of Con diagnose conditions based on our training their accuracy with that of trained ophthalm
urrent screening methods th eye care systems	 Machine Learning A Images captured using 1st generation h N=261 images of cataract, with vary N=169 normal eye images Images labeled using in-person ophthality Developed Referral Criteria by selecting
<section-header></section-header>	Diagnostic Conco Smartphone-based examination vs. in-per ophthalmologist examination • 95.9% visual acuity agreement between I level ophthalmologic personnel) and CHW health worker) • 93.33% patient level diagnostic concorda
99% SEE FULL REPORT	Imachine Leanning A Image Count
consisting of a low nician web portal, me triage	Cataract261Normal Eye Exam169Overall430Figure 3. Proof of concept for au
	cataract diagnosis using 1 st gene
bonsor arranges transport for atients needing in-person care	Next StepsLarge Scale Validation SDiagnostic validation study using 2nd ge• N=2000 eyes of 1000 patients• Evaluate acceptability in key stakeholders
Patient comes to eye care facility for treatment	 Machine learning algorithm using 2nd get N=2000 eyes of 1000 patients Combine images, visual acuity, and eye h Diagnose cataract, refractive error, normal
	Use "back end" platform to improve heal performance

Integrate data into electronic health record

• Track CHW performance

Pragmatic trials to optimize patient follow-up

Study

generation device

generation device

history data nal eye exam

alth system

Visilant's end-to-end patient outreach and diagnostic system, facilitates the collection of accurate, high quality, diagnostic level patient information and anterior segment images by minimally trained community health workers. Preliminary machine learning results show proof of concept for automated, smartphone-based, real-time triage of anterior segment diseases

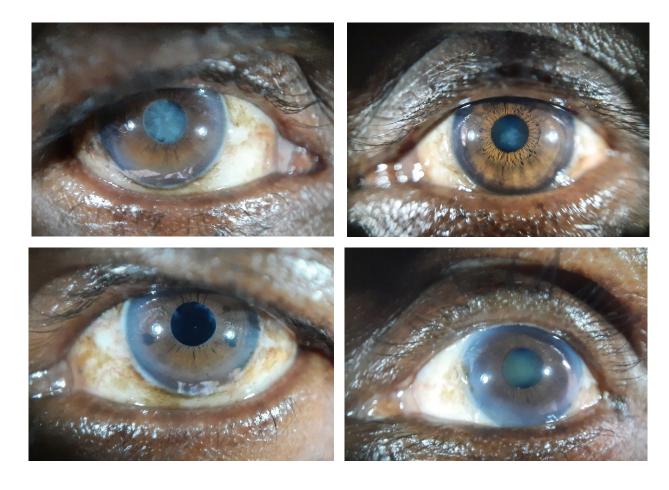
The large-scale validation study starting in May will show that:

- remote, asynchronous review;
- in-person eye camp exams;
- graders.

We would like to provide special thanks to our additional advisors in Dr. Rengaraj Venkatesh, Dr. Dayakar Yadalla, Dr. David Friedman, Dr. Ehsan Vaghefi, and David Green.

Contact: nmohsen1@jhu.edu

Standardization of Image Capture


Second generation hardware

- Standardized scope length to ensure image focus
- Scope designed to block out ambient light
- Focus within ideal range for anterior diseases
- Simplified design for minimally trained users

1st vs. 2nd Generation Images

Second Generation Hardware

85/90 (94.4%) "Referrable" 81/90 (90%) "Diagnosable"

Figure 4. Images taken before (left) vs. images taken after (right) after implementation of our device showing improved lighting and positioning of eye

Conclusion and Acknowledgments

(1) CHWs can use smartphones to capture eye images and clinical data from rural patients and submit findings for

(2) Remote ophthalmologists can review smartphone screening data to diagnose cataract with good concordance with

(3) A machine learning (ML) algorithm can diagnose cataract with high concordance with remote ophthalmologist