PRIVACY-PRESERVING MODEL TRAINING FOR
BREAST CANCER PREDICTION

Machine Learning
Memorization

It has been shown that ma-
chine learning techniques
memorize patient data and
can be reverse-engineered
to identify patients. This
makes medical institutions
wary of distributing data for
researchers to train machine
learning models.

Data scientists require a way
to build medical machine
learning models while main-
taining patient privacy.

Solution

The flowchart below highlights our solution to this solution to this problem.
It allows hospitals to keep their data entirely on-site and prevents machine
learning algorithms from memorizing information.

Testing

We created a model to predict breast cancer under varying privacy re-
quirements. We then compared the accuracies in the figure shown below.
Note that smaller € values correspond to higher levels of privacy.
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