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Background

Physiological decompensation occurs when the body
cannot regulate its functions at a working level and the
patient’s physiological status deteriorates. Events such as
cardiac arrest, respiratory failure, and kidney failure all
represent different subsets of this decompensation. Early
detection of decompensation is essential for saving lives
and providing clinicians with valuable information to
execute potential life saving interventions. The current
standard of early decompensation detection is the
National Early Warning System (NEWS2); however, it
lacks any predictive approach as it does not reflect
patterns over time. Thus, clinicians need a tool that can
encompass better features and predict whether an ICU
patient will face physiological decompensation.

Methods and Approach

Data was taken from the MIMIC-III Clinical Database,
including demographics, vital signs, and lab tests. Our
overall dataset consisted of the ICU stays of adult patients
(>15 years of age as per MIMIC guidelines) who had a
length of stay of greater than or equal to 48 hours. We
started with developing a mortality predictor, as mortality
is arguably the strongest label for physiological
decompensation. The goal was to predict mortality within
24-48 hours from a sample 24-hour time window within a
patient’s ICU stay. We used three different models and
performed k-cross validation on the latter two for feature
selection and model validation using a 70-30 training-
testing split.
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Figure 1 — Top Features for Gradient Boosting and Random
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Figure 2 — Mortality Predictor — AUC of Logistic Regression,
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Figure 3 — PR Curves of Models in Figure 2

So far, our gradient boosting and random forest models outperform
our logistic regression model, which was expected. Top features
also overlap between gradient boosting and random forest feature
selection, indicating the overall importance of these features.

Conclusion and Future Direction

We found that our mortality predictor performance was consistent
with literature, as well as the feature selection done via gradient
boosting and random forest, as many of our top features were
notable for their correlation with mortality.

We first plan to further improve this mortality model by looking at
time weighting, expanding feature selection, and then looking at
other models’ performances, including recurrent neural networks.
After, we will move onto the inclusion of other labels that comprise
physiological decompensation and look to create an overall
predictor of physiological decompensation utilizing time series data
combined with risk scores.



