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Brain atlases are key for localizing neurobiological regions of interest. Using volumetric coordinate
spaces, functional relationships can be assessed in conjunction with anatomical data. Over the past
fifty years, many human brain atlases have been developed using a variety of methods. However, these
atlases are stored in different formats, orientations, and coordinate spaces, making comparisons across
atlases and studies difficult. We consolidate all the popular human brain atlases into a single location,
and transform them all into the same standard format. This format served as the basis for a specifica-
tion that we introduce to store future atlases. To demonstrate the utility of collecting all these atlases
in a common specification, we conduct an experiment using the Healthy Brain Network data, quantify-
ing the dependence between each parcel in each atlas with various phenotypic variables. The reposi-
tory containing the atlases, the specification, as well as relevant transformation functions is available at
https://github.com/neurodata/neuroparc.

Background & Summary

Brain atlases are systems of labelling the brain with recognizable regions that provide some structural or func-
tional parcellation [1]. Atlases serve to help the user visualize and understand the brain’s complex organization.
Dividing a brain into determined regions can be a starting point for quantitative analysis. Differences between hu-
man brains can be quantified in terms of different sizes of regions. Diseases can be better understood by studying
population differences in affected brain regions. Atlases enable researchers to localize activity in the brain to a
shared region between different brains [2]. Atlases can be used as a reference for surgery [3]. Moreover, atlases
provide a coordinate system that enables scientists and doctors to describe relation positions across brains, and
compare across studies [1, 4].

Numerous atlases have been defined over the past fifty years, often with different reference brains and parcel-
lation methods [5]. Different data modalities and scales have been used to parcellate the brain into regions,
including (i) macroscale anatomy [6], (ii) functional activity [7], and (iii) cytoarchitecture [8]. To date, over 20
different adult human brain atlases are common in the literature. In addition to using different source data for
parcellating the brain, they also use different reference images, scales, orientations, and formats to store these
data.

Some efforts to consolidate these atlases is already underway. For example, Nilearn is a popular package for
machine learning relating to neuroinformatics and neuroimaging [9]. The ease of use of Nilearn is excellent since
it provides several single line command line interface functions to “fetch” both atlases and datasets. The problem
comes with the lack of standardization. Nilearn’s functions pull from the source without modification and the
documentation of the atlases and datasets usually just provides links to the original publication. Thus, for each
atlas that an investigator wants to use, they must figure out the atlas-specific specification and details. Moreover,
if the investigator desires to compare across atlases, they must understand the metadata associated with both
atlases, and be able to transform them into a common format.

We present Neuroparc, which consists of (1) a repository of the most commonly used atlases in neuroimaging, (2)
an atlas specification that will enable researchers to both easily understand existing atlases, and generate new
atlases compliant with this specification, and (3) a set of functions for transforming, comparing, and visualizing
these atlases. We compile and visualize 24 different adult human brain atlases, and compare them using the
Dice score between all pairs of atlases. To validate the atlases and their utility, we conduct an analysis using the
Healthy Brain Network (HBN) data [10]. Specifically, for each parcel of each atlas, we evaluate the dependence
between activity and various phenotypic variables, to identify which atlases are particularly informative about
phenotype. To facilitate replication and extension of this work, all the data and code are available from .
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UPDATED* Background & Summary

Developing a thorough understanding the brain’s organization is one of the key challenges in human neuro-
science (Glasser 2016) and critical for clinical translation (Fox Grecius 2010). Parcellation of the brain into
functionally and structurally homogenous regions has seen impressive advances in recent years (Eickhoff, Yeo,
Genon, 2018), and has facilitated the growth of the field of network neuroscience (Hagmann 2007, Zalesky 2010).
Through a range of efforts using clustering (Bellec, Rosa-neto, Lyttelton, Benali, Evans, 2010; Craddock, James,
Holtzheimer, Hu, Mayberg, 2012; Nikolaidis 2019; Thirion, Varoquaux, Dohmatob, Poline, 2014), multivariate
decomposition (Beckmann, Mackay, Filippini, Smith, 2009; Varoquaux, Gramfort, Pedregosa, Michel, Thirion,
2011), gradient based connectivity (Cohen et al., 2008; Glasser et al., 2016; Gordon et al., 2014; Nelson et al.,
2010; Wig et al., 2014; Xu et al., 2016), and multimodal neuroimaging (Glasser 2016), researchers have led to
new fundamental insights into the organization of the brain and it’s network properties (Margulies 2016). The
dissemination of these brain parcellations has enabled researchers to investigate brain network associations with
developmental (Dosenbach et al., 2010; Liem et al., 2017), cognitive (Finn et al., 2015; Shehzad et al., 2014),
and clinical phenotypes (Abraham et al., 2017; Greene et al., 2016; Hong, Valk, Di Martino, Milham, Bernhardt,
2018) .

Today, researchers interested in understanding brain organization are presented with a range of possible brain at-
lases for performing network based analyses (Arslan 2018). While this range of options is a boon to researchers,
the use of different parcellations across studies makes assessing reproducibility of brain-behavior relationships
difficult (e.g. comparing across parcellations with different organizations and numbers of nodes; Zalesky et al.,
2010). Furthermore, replicating results across a range of parcellations can be a challenge given that they lack a
common data format, orientation, and availability. Creating a database that offers researchers access to a large
range of atlases in a common format would facilitate replication across atlases and studies.

Some efforts to consolidate these atlases is already underway. For example, Nilearn is a popular package for
machine learning relating to neuroinformatics and neuroimaging [9]. The ease of use of Nilearn is excellent
since it provides several single line command line interface functions to ’fetch’ both atlases and datasets. Nilearn
includes a twelve of volumetric anatomically and functionally defined atlases, such as the Harvard-Oxford and
AAL atlases. However, these atlases all belong to a limited range of currently available atlases, and the more
recent gradient based, surface based, and multimodal parcellations have not yet been included into a central
repository with the most common volumetric atlases.

In the current work we present a common platform for compile and visualize 24 different adult human brain
atlases within an easily accessible python package, Neuroparc. We create a platform for common specification
of atlases across a range of surface and volume based parcellations enabling easy comparison of brain-behavior
relationships across a range of parcellations. Neuroparc provides detailed atlas specification requirements to
enable new atlases to be added easily and a set of tools for transforming, comparing, and visualizing these
atlases. Here, to provide users with an overview of the relationship between these parcellations we assess the
spatial similarity between atlases, as measured by Dice coefficient. Furthermore, we provide an prototypical
analysis of brain-behavior relationships in these atlases defined networks across a range of phenotypic variables
from the large publicly available developmental sample, the Healthy Brain Network. All code used to create these
analyses, as well as the Neuroparc package and documentation are all publicly available for easy extension and
integration into currently existing frameworks.
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Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., Mayberg, H. S. (2012). A whole brain fMRI atlas
generated via spatially constrained spectral clustering. Human Brain Mapping, 33( 8), 1914âĂŞ1928.
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Abraham, A., Milham, M. P., Di Martino, A., Cameron Craddock, R., Samaras, D., Thirion, B., Varoquaux, G.
(2017). Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example. NeuroIm-
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Figure 1: A comparison of the regions present in the major atlases available in Neuroparc. These visualizations were made
using MIPAV tri-planar views on the same slice numbers. The slice numbers are formatted as (H=Horizontal, S=Sagittal,
C=Coronal). For most atlases, the slice numbers were (90, 108, 90). There are a few exceptions to the slice numbers listed
here for visualization purposes: JHU: (90, 108, 109), Slab907: (95, 104, 95), Slab1068: (93, 105, 93) [8] [6] [11] [12] [13] [14]
[15] [2] [16] [17] [7]
.

L. (2016). Multivariate pattern classification of pediatric Tourette syndrome using functional connectivity MRI.
Developmental Science , 19 (4), 581âĂŞ598.

Hong, S. J., Valk, S. L., Di Martino, A., Milham, M. P., Bernhardt, B. C. (2018). Multidimensional Neuroanatomical
Subtyping of Autism Spectrum Disorder. Cerebral Cortex , 28( 10), 3578âĂŞ3588.

Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C., Rueckert, D., Parisot, S. (2018). Human brain
mapping: A systematic comparison of parcellation methods for the human cerebralcortex. NeuroImage, 170
,5âĂŞ30.

Methods

Data Compilation

Neuroparc contains atlases from several locations. As previously noted, there is no current standard for atlas stor-
age, so all gathered datasets are converted into a single format. We define this human brain atlas specification
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in detail within Data Records.

Atlases

Dice Coefficient

The Dice coefficient is a measure of similarity between two sets (reference Dice Paper). Specifically, it measures
a coincidence index (CI) between two sets, normalized by the size of the sets. Let h be the number of points
overlapping in the sets A and B, and a and b are the sizes of their corresponding sets, then CI is defined by

CI =
2h

a+ b
. (1)

This formula can easily be applied to a segmented image by finding the overlap between labelled regions.

CIij =
2hij
ai + bj

(2)

where i is the region in image 1 and j is the region in image 2. The result is a similarity matrix, as shown in
Figure 2. Since this map visualizes similarity between two regions in two atlases, the information provided by the
Dice map can be used quantify which regions in a given atlas are most similar to regions in another atlas.
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Figure 2: Dice Score Map between the Yeo 17 Networks atlas and the 300 parcellation Schaefer atlas. The strong symmetry
of the Yeo atlas is apparent here.

Adjusted Mutual Information

Adjusted mutual information is another measure of the similarity of two labelled sets, quantifying how well a
particular point can be identified as belonging to a region given another region. It differs from the Dice coefficient
in that it tends to be more sensitive to region size and position relative to other regions. [18] But like the Dice
coefficient, it is not dependent on a region’s label [19]. Volumes that share many points are likely to be have a
higher mutual information score all else being equal [20]. To assure that all atlas comparisons were on the same
scale, Neuroparc computes the adjusted mutual information score. Let H(·) denote entropy, N be the number of
elements in total, and H(MIAB) denote the expected mutual information for sets of size a and b. [21]

MIAB =
∑
a,b

PA,B(a, b) · log
PA,B(a, b)

Pa(a) · Pb(b)
(3)
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degree of mutual information as expected as they were built using the same algorithm.

AMIAB =
MIAB − E(MIAB)

avg(H(A), H(B))− E(MIAB)
(4)

Figure 3 shows the adjusted mutual information between all pairs of atlases. The information provided for this
score is atlas-wide, while the Dice score was computed per region to generate a map. The similarity between
groups of atlases, such as the various Schaefer atlases, and the Yeo liberal atlases, is immediately apparent.

Code availability

Code for processing is publicly available and can be found at the same GitHub link (https://github.com/neurodata/neuroparc)
under the scripts folder. Examples of useful functions include center calculation for regions and scripts to save
files in the NIfTI format. All code is provided under the Apache 2.0 License.

Visualizations are generated using both MIPAV 8.0.2 and FSLeyes 5.0.10 to view the brain volumes in 2D and
3D spaces [22, 23]. Figure 1 is created using MIPAV triplanar views of each atlases with a striped LUT.

Data Records

All data records described in this paper are available primarily through the Github repository: https://github.
com/neurodata/neuroparc. Several file types are contained in this location and are necessary for fully
describing an atlas. Neuroparc introduces an atlas specification that includes a reference brain, an atlas file, and
atlas metadata.

Reference Brain

To allow direct comparison between different atlases, a standard reference brain must be used for all involved
atlases. Within Neuroparc, a single reference brain is provided, yielding a coordinate space. Neuroparc uses
Montreal Neurological Institute 152 Nonlinear 6th generation reference brain, abbreviated MNI152NLin6 in the
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file naming structure [24].

The brain is stored in a GNU-zipped NIfTI file format of a T1 weighted MRI.Three image resolutions are available
in Neuroparc (1mm, 2mm, and 4mm) for flexibility. The naming convention for these files is: MNI152Nlin6_res-
<resolution>_T1W.nii.gz. The format of the resolution input would be 1x1x1 for the 1 mm3 resolution.

Atlas Image

The atlas image is also a GNU-zipped NifTi file containing the parcellated reference brain according to the spec-
ifications of the atlas. The file indicates to which region each voxel belongs. Each region of interest (ROI) within
this parcellated image is denoted by a unique integer ranging from 1 to n where n is the total number of ROIs.
The naming convention for the atlas is: <atlas_name>_space-MNI152NLin6_res–<resolution>.nii.gz. The at-
las_name field is unique for each atlas image, ideally no more than two words long without a space in between
(e.g. yeo-17, princetonvisual, HarvardOxford). For simplicity, only the 1 mm3 resolution parcellation is stored
within the repository, but other resolutions can be calculated from the reference brain images.

Atlas Metadata

The metadata corresponding to the atlas is contained within a JSON file format. This file is split into two sections:
region-wide and atlas-wide information.

The region-wide data must contain the number, label, center, and size for that region. The center and size can be
calculated using provided code in Neuroparc. Although label must be specified, this information is not relevant
for all atlases. In that case, NULL should be used for the labels of the regions. For hierarchical regions, the
naming should be in order of largest region to smallest with a ’.’ in between each name. Optional fields in the
region-wide data include description and color. Description can be used to provide more information than the
region label if necessary. An example of this use is in the Yeo-7 Networks atlas. The label for this atlas is in the
form ’7Networks_2’, but the description for that label is the corresponding functional network, ’Somatomotor’ in
this case. The color field must be given in the form [R, G, B] and is only used if the user wants to specify the
colors of the regions upon visualization.

Brain-wide data must include the name, description, native coordinate space, and source of the atlas. The name
field allows for more elaboration than in the name of the file. The description is more flexible, allowing the creator
of an atlas to briefly describe important information for users of their atlas. The intended use case or the method
of generation are examples of information provided in this field. Since all atlases in Neuroparc are stored in the
same coordinate space, the coordinate space used during the creation of the atlas must be specified. Finally, the
publication detailing the atlas should be included in the source field so users can have a more full understanding
of the atlas being used. Optional fields for brain-wide data can all be calculated, including the number of regions,
the average volume per region, whether the segmented regions are hierarchical, and if the atlas is symmetrical.

The naming convention for this file is as follows: <atlas_name>_space-MNI152NLin6_res-1x1x1.json. Again, this
metadata is only relevant to the 1 mm3 resolution, but other data is easily calculated when necessary.

The full description and format of the atlas specification is available within Neuroparc at https://github.
com/neurodata/neuroparc/blob/devel/atlases/Human/atlas_spec.md.

Technical Validation

All atlases included in Neuroparc have been pulled from reputable published sources (cite them), and modified to
fit the above described atlas specification. Specifically, all of the atlas images were converted into the Montreal
Neurological Institute 152 Nonlinear 6th generation coordinate space. All of the atlases were applied to the single
T1 weighted MRI scan so that each atlas is directly comparable.

To demonstrate the validity of these atlases, we conduct the following case study. The Healthy Brain Network
(HBN) is a relatively new dataset that consists of approximately 1,000 children and adolescents in New York City.
HBN was created to study mental health and learning disorders. HBN includes phenotypic data in the form of
tests on psychiatric, behavioral, cognitive, and lifestyle, as well as multimodal brain imaging, electroencephalog-
raphy, digital voice and video recordings, genetics, and actigraphy. In this analysis, ’MGC’, an independence test
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implemented in the python package ’mgcpy’ was used to test for correlation between functional connectomes
and phenotypic data [25, 26]. For XXX individuals, we ran the NDMG pipeline on XXX individuals’ resting state
functional MRI data to obtain connectomes for each [27]. We then selected YYY assays to test for a dependence
between the connectomes on various phenotypic properties. Doing so required carefully cleaning and purging
the subject level questionnaire answers to eliminate missing data and spurious entries.

For each phenotypic test and each atlas, we ran MGC to test whether connectomes and cognitive assays were
statistically dependent on one another. (Figure 4). Assays generally had either multiple atlases which found a
significant correlation (α ≤ 0.05), or none. The assays which had a significant correlation for some atlases were
APQ_SR, ASSQ, CELF_5_Screen, MFQ_P, PAQ_C, and SWAN. APQ_P, MFQ_SR, and PAQ_A which are the
same tests but for a different age group as APQ_SR, MFQ_P, and PAQ_C. The APQ, ASSQ, CELF_5_Screen,
MFQ, PAQ, and SWAN are in the categories Family Structure Stress and Trauma, ASD, Verbal Learning, De-
pression and Mood, Physical, and ADHD as given by the Child Mind Institute. There does not appear to be a
strong connection from this alone between category of test and whether significant correlation is found. ACE, a
questionnaire on the occurrence various traumatic childhood events, SCAREDP, an anxiety test for preschoolers,
and PAQ_A, a questionnaire on physical activity all also showed extremely high p-values.
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Figure 4: This bee-swarm plot shows the log of the p-value for the correlation between functional connectomes generated by
different atlases and phenotypic tests. The differences in distributions demonstrate the importance of choosing the right atlas
for the specific task.

Interestingly, the same tests but given in the regular version or the preschooler version frequently had very
different results. This appears to indicate that such tests might have more correlation with brain connectivity and
structure within different age groups.

Medians over all atlases show the results discussed above. Medians over all tests are all fairly high and not very
distinct. The tissue atlas has the highest average p-value, and the HarOxCort atlas has the lowest, ranging from
about 0.35 to 0.55. This does not account for whether or not the atlas is correctly finding correlations and is an
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average over relatively few tests, so it is hard to interpret. It would be interesting to investigate this variation more,
possibly when averaging over a higher number of tests than this analysis.

Usage Notes

The Usage Notes should contain brief instructions to assist other researchers with reuse of the data. This
may include discussion of software packages that are suitable for analysing the assay data files, suggested
downstream processing steps (e.g. normalization, etc.), or tips for integrating or comparing the data records with
other datasets. Authors are encouraged to provide code, programs or data-processing workflows if they may help
others understand or use the data. Please see our code availability policy for advice on supplying custom code
alongside Data Descriptor manuscripts.

For studies involving privacy or safety controls on public access to the data, this section should describe in detail
these controls, including how authors can apply to access the data, what criteria will be used to determine who
may access the data, and any limitations on data use.
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