People
Michael Miller

Michael I. Miller, PhD

Bessie Darling Massey Professor and Director

Director, Center for Imaging Science
Co-Director, Kavli Neuroscience Discovery Institute
Johns Hopkins University Gilman Scholar

Office: Clark 301
Lab: Center for Imaging Science
410-516-4594

mim@cis.jhu.edu
For scheduling requests, contact BME-DIRECTOR@jhu.edu


Education

B.S.E.E. State University of NY at Stony Brook, 1976
M.S.E.E., The Johns Hopkins University, 1979
Ph.D., B.M.E., The Johns Hopkins University, 1984

Research Interests

Michael I. Miller is the Bessie Darling Massey Professor and Director of Biomedical Engineering at Johns Hopkins University. He is also director of the Center for Imaging Science and co-director of the Kavli Neuroscience Discovery Institute.

As a biomedical engineer, Miller is pioneering cutting-edge technologies in computational medicine to understand and diagnose neurodegenerative diseases. His research focuses on the functional and structural characteristics of the human brain in health and disease, including Huntington’s disease, Alzheimer’s disease, dementia, bipolar disorder, schizophrenia, and epilepsy. By developing new tools to analyze patient brain scans, derived from advanced medical imaging technologies, Miller aims to predict the risk of developing neurological disorders years before the onset of clinical symptoms. His lab is currently devising cloud-based methods to build and share libraries of brain images—and the algorithms used to understand them—associated with neuropsychiatric illness. Miller’s research is highly translational, and he has co-founded four start-up companies in the past decade.

Miller has co-authored more than 200 peer-reviewed publications, as well as two highly cited textbooks on random point processes and computational anatomy. In 2002, he was recognized by the Institute for Scientific Information (ISI) Essential Science Indicators for garnering the highest rate of increase in total citations in the field of engineering for his work in computational anatomy.

He has received numerous awards for his work, including the national Institute of Electrical and Electronics Engineers (IEEE) Biomedical Engineering Thesis Award in 1982, the Johns Hopkins Paul Ehrlich Graduate Student Thesis Award in 1983, and the National Science Foundation (NSF) Presidential Young Investigator Award in 1986. He was named an inaugural Johns Hopkins University Gilman Scholar in 2011 for demonstrating a distinguished record of research, teaching, and service. He is an elected Fellow of the American Institute for Medical and Biological Engineering and the Biomedical Engineering Society.

Miller earned his BS from the State University of New York at Stony Brook in 1976, and his MS and PhD in biomedical engineering from Johns Hopkins University in 1978 and 1983, respectively. He was the Newton R. and Sarah L. Wilson Professor in Biomedical Engineering at Washington University in St. Louis until joining Johns Hopkins University in 1998. He was named the Herschel and Ruth Seder Professor in Biomedical Engineering in 2003, before his appointment as the director of biomedical engineering in 2017.

Selected Publications

From Pub Med   |   Google Scholar Profile

Publications Search

Michael I. Miller, Andreia V. Faria, Kenichi Oishi, and Susumu Mori, “High-throughput neuro-imaging informatics,” Front Neuroinform. 2013; 7: 31.

Susumu Mori, Kenichi Oishi, Andreia V. Faria, Michael I. Miller, “Atlas-Based Neuroinformatics via MRI: Harnessing Information from Past Clinical Cases and Quantitative Image Analysis for Patient Care ,” Annu Rev Biomed Eng. Author manuscript; available in PMC 2013 July 23.

D. J. Tward, J. Ma, M. I. Miller, L. Younes, “Robust Diffeomorphic mapping via Geodesically Controlled Active Shapes,” International Journal of Biomedical Imaging, N pages (2013).

Y. Zhang J. Zhang, et al., Atlas Guided Tract Reconstruction for Automated Examination of the White Matter Anatomy, Neuroimage, 2010, vol. 52, no. 4, 1289-1301.

M.I. Miller, Computational Anatomy: shape, growth and atophy comparison via diffeomorphisms, Neuroimage, 2004, vol. 23, Suppl 1: S19-33.

U. Grenander and M. I. Miller, “Computational Anatomy: An Emerging Discipline,” Quart. App. Math., 1998, vol. 56, pp. 617-694.