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Abstract

Subband adaptive filters utilize subband decompositions to reduce the length of

the adaptive filters, and thus reduce the number of computations needed to adapt

for very large filters. Smaller bands have been shown to greatly reduce the computa-

tional complexity, but at the cost of performance. Both the convergence rate and the

misadjustment of the adaptive structure suffer due to the decomposition.

Tridiagonal transfer functions as well as oversampling have been proposed to re-

duce these effects [6, 21]. More recently, non-uniform subband decompositions have

been proposed in order to cover the cross-terms and reduce the convergence time [20].

The issue then arises that the optimal subband decomposition is often not known

a-priori.

This paper proposes a method of adapting the subband decomposition for non-

uniform adaptive filters in order to reduce the misadjustment and convergence time

when modeling non-stationary processes. A QMF based tree structure, along with

an adaption algorithm were designed and implemented in MATLAB. The algorithm

was able to correctly adapt for the changes in the non-stationary unknown transfer

function. Both the convergence rate as well as the misadjustment were improved with

minimal excess computation.
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Chapter 1

Introduction

1.1 Motivation

In many signal processing applications, it is necessary to use a filter which is

optimal with respect to given criteria. Often, this optimal filter cannot be known

prior to the filtering operation, and thus the coefficients cannot be hard-coded into

the algorithm. This has led to a class of filters known as adaptive filters, which can

adjust their coefficients to achieve the desired optimal behavior of the filter.

A prime example is the problem of echo cancellation in telephony [4, 6, 14]. In

this scenario, illustrated in Figure 1.1, a user at terminal A sends a signal a[n] to

user B, that is simultaneously responding with a signal b[n], which for simple analysis

is uncorrelated to a[n]. If the transmitter at B is in close proximity to the receiver,

the transformed signal from A may mix with the signal b[n] prior to transmission at

B.Thus the signal received at A, y[n], has the z-transform:

Y (z) = GAB(z)(B(z) +GBA(z)A(z)) (1.1)
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where GAB(z) is the transfer function for the path from B to A, GBA(z) is the trans-

fer function from A to B , and B(z) and A(z) are the z-transforms of b[n] and a[n],

respectively. In order to clean the received signal at A, the part of the signal that

depends on the echo of a[n] must be estimated and eliminated. If the behavior of the

transfer function applied to a[n] is known, then a filter H(z) = GAB(z)GBA(z), as

in Figure 1.1, can be placed to accomplish this. This filter will remove the undesired

part of the received signal, and all that will be left is E(z) = GAB(z)B(z).

an
Transmitter A Receiver B

GBA(z)

++Transmitter BReceiver A
GAB(z)

bn

H(z)

−+
ŷn

en

Figure 1.1: Echo Cancellation Problem

Usually, though, the transfer function GBA(z)GAB(z) is unknown and difficult to

estimate. Instead, the echo cancellation filter H(z) is initialized at some value, and

then adapted in time to accomplish its task. The adaption algorithm aims to change

the tap weights of H(z) in order to best cancel out the part of y[n] that is dependent

on a[n].

For this particular task, linear prediction and the orthogonality principle are im-

plemented. Instead of attempting to explicitly define dependence of y[n] on each of

the inputs, the problem is reformulated into attempting to find the best estimate of

y[n] given only past samples of a[n].At each time step, y[n] is a linear sum of past

a[n], b[n] and is consequently in span{a[i], b[i]}, i ≤ n. The predictor, on the other
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hand, is a linear combination of past a[n] and therefore can only calculate what is in

the span{a[i]}, i ≤ n. Thus, by the orthogonality principal, the error exists in the

space orthogonal to the prediction space, in this case span{b[i]}, i ≤ n.

Generally this method takes into account all past a[i] and b[i], indicating an infi-

nite impulse response (IIR). Although the transfer function from y[n] to a[n] may

have an IIR filter response, all the poles are assumed to be inside the unit cir-

cle. Thus all impulse responses are of the form |p|nexp(jnθ), with |p| ≤ 1 and

θ = tan−1(Im(p)/Re(p)) is the angle of p. Therefore, it is not unreasonable to say

that y[n] can be approximated with a finite number of past a[n] and b[n], putting it in

the span{a[n], a[n−1], ...a[n−M1], b[n], b[n−1], ...b[n−M2]}∪V . Here, V represents

the noise space, which is orthogonal to the signal spaces spanned by the M1 past a[n]

values and the M2 past b[n] values. In terms of the impulse response, given an arbi-

trarily small number ε, there is a finite time where the impulse response associated

with every pole will drop below ε. In fact this time period can be calculated to be

nε = ln (ε/gH) / ln (maxi |pi|), where gH is the gain for the mode corresponding to the

pole with the maximum magnitude. Then, given noise in the system with variance

ε, after time nε the level of the signal is below the noise floor, resulting in a nega-

tive signal to noise ratio (SNR). Thus the projection of y[n] onto the signal space of

{a[n], a[n− 1], ..., a[n−M1]}, estimated by the adaptive filter H(z) can be realized as

a finite impulse response (FIR) filter rather than an IIR filter.

Modeling H(z) as a FIR filter is advantageous for adaptive filtering because of the

relative ease of retaining stability [7]. In adaptive filters the filter coefficients can take

on any values and as such the zeros (and possibly poles) of the filter are free to move

about the z-plane. In algorithms that only adapt the zeros of a filter, the necessary

condition to force the magnitude of the poles to continuously satisfy |p| < 1 is no

3



longer required. Instability, however, may still occur in an all-zeros model due to the

adaptation feedback algorithm, especially in the case where significant quantization

is present. The FIR case provides a very simple model for the case where only the

zeros are adapted. This is the reason that the two most widely used adaptive filter

algorithms, the least mean squares (LMS) and recursive least squares (RLS) both use

an FIR structure [7].

The LMS algorithm is designed to recursively calculate the Wiener filter (explained

in section 2.2), the corresponding Wiener-Hopf equations, and the concept of steepest

descent. Essentially, the error signal, along with a prescribed step size, determine

the amount by which the tap weights change in the direction specified by the data

vector ~u[n]. This brings the tap weights closer to the optimal Wiener filter coefficients.

The actual tap weights might never reach the optimal weights, however, due to the

resolution determined by the step size. Instead the tap weight values will oscillate

about the Wiener filter coefficients. The RLS algorithm is instead based on the least

squares curve fitting problem, utilizing the matrix inversion lemma to recursively

compute the solution.

Many variations of these two base adaptive algorithms have been designed [7].

These variations resolve some of the inadequacies of the standard algorithms under

certain conditions. For example, the adaptive step size least mean squares (ASS-

LMS) attempts to eliminate long term large oscillations about a local minima, which

occur when the step size is too large. A similar variation is the adaptive forgetting

factor recursive lease squares (AFF-RLS) algorithm. A more specific example is the

recursive least squares adaptive threshold nonlinear algorithm (RLS-ATNA) which

smooths out impulsive noise by introducing a nonlinear denominator dependent on

the error [10,11].
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One of the larger classes of variations of these adaptive algorithms are subband

methods [21, 22]. In the subband approach, an M -channel analysis filter bank is em-

ployed to break up the desired signal into M subband signals. The adaptive algorithm

is then applied to each subband independently, with the final output retrieved by fil-

tering the M subband outputs through a synthesis bank. Using this approach, very

large adaptive filters with tap weights numbering in the hundreds can be adapted

with only a fraction of the computational complexity. For example the effective num-

ber of computations of an LMS filter can be reduced from 2M to 2L + M using a

two band filter structure. Here L is the length of the analysis and synthesis bank

filters. This type of structure was derived for both the LMS and the RLS adaptive

algorithms [6, 23].

This method, though, does not account for either the cross-terms between bands

or the slower convergence due to running the subsystems at a slower rates. It has been

shown by Petralgia et. al. [2, 21] that the overlap of the analysis filter banks causes

energy in the overlap regions to not be fully represented in the subbands. Thus the

signal space that is spanned by the input after the analysis bank is a proper subset

of the space spanned by the input prior to the analysis bank. The estimation of the

output may then be lacking the part of the projection that would have landed in that

space, causing the error of the adaptive filter to rise. In addition the slower rates which

the subsystems are running at cause a decrease in convergence approximately propor-

tional to the decimation factor. These phenomena have both been experimentally

verified [2, 6, 21–23].

Several methods have been proposed to deal with these issues, including over-

sampling, tridiagonal transfer functions, and non-uniform subband decompositions,

[19,20]. Oversampling all of the subbands in the analysis bank causes certain regions
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of the spectrum to be seen by multiple subbands, eliminating the need for extra filters.

This solution expands each of the subbands, increasing their update rates and increas-

ing the convergence rates. This method entails unnecessary sampling, and therefore

unnecessary computations spent on subsequent calculations.

Tridiagonal and non-uniform subband methods have been proposed to utilize crit-

ical sampling. The tridiagonal approach involves artificially including cross-terms,

which depend on the subband filter bank coefficients and the coefficients of the two

neighboring analysis bank filters. For instance, the cross-term in the kth band from the

transition between the kth and (k+1)th subband filters would beHk(z)Hk+1(z)Gk+1(z).

Here Hi(z) is the ith analysis bank filter, and Gi(z) is the ith subband filter. A sym-

metric calculation would account for the lower cross-term from the transition between

the (k−1)th and kth subband: Hk−1(z)Hk(z)Gk−1(z). This process adds extra bands,

and although they are not updated separately since they depend on the neighboring

filters, they require more computation to filter and decimate separately. In addi-

tion, they do not have the freedom to adapt based on their own errors since these

cross-terms are directly related to the main band filters.

The non-uniform subband decomposition accounts for this by simply expanding

bands of interest, automatically including all the cross-terms within that band. The

trade-off is that the larger bands have more tap weights to adjust than the smaller

bands, increasing the computations required to update them. Also, the bandwidths

have to be decided ahead of time, requiring a-priori knowledge of the desired input-

output characteristics. In many cases this is not feasible (e.g. if the system is time-

varying). In the case of time-varying systems, a method would be needed to change

the subband decomposition depending on the power in each band at the input and

output.
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1.2 Problem Statement

This paper addresses the task of reallocating the bandwidth of non-uniform sub-

band structures on the fly in order to follow the input-output characteristics of the

unknown system. With a-priori knowledge of the system, the problem becomes triv-

ial, since the bandwidths can be allocated optimally beforehand. In the case of time-

varying or completely unknown systems, the bandwidths cannot be pre-allocated and

therefore need to be adjusted as information is obtained about the system.

This problem can be broken up into two main parts. The first is to design an

appropriate subband filter structure. This structure must be able to change subband

decompositions quickly and efficiently while maintaining the perfect reconstruction

condition. Initialization of the structure may or may not be important depending

on the adaptability of the algorithm itself. There has been much work in this area,

and optimal structures, as well as structures that increase the ease of implementation

have been proposed [17, 28]. While the optimal structures are very generalized, the

structures that ease implementation are usually based on tree structured filter banks.

The second task is to devise an algorithm by which the bandwidths are reallo-

cated while the adaptive filter is running. Some algorithms to make decisions on

the reallocation have been proposed, but these algorithms deal with the oversampled

case [15–17]. An algorithm than can retain the critically sampled property of the

subband decomposition as it adjusts the subband widths would be beneficial in such

adaptive systems.
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1.3 Previous Work

There have been some proposals for such a subband reallocation algorithm by

McCloud and Etter in [15,16]. The algorithm outlined in [15] deals with oversampled

systems, and focuses on using the subband widths to isolate transition regions. This

has been proven by Griesbach in [8] to decrease the minimum attainable steady state

error, J(∞). Using smaller subbands around transition regions has been shown to

lead to better results when compared to uniform subband decompositions [8]. Their

design, however, still tends to larger subband widths in regions where there is no signal

relative to the minimum allowable band width, when using smaller widths would save

more computations [8].

The algorithm closest to the one proposed here is given by McCloud and Etter [16],

but this algorithm depends on the error power to change the subband decomposition.

This dependence can cause the algorithm to suffer from similar unnecessary adapta-

tions as the adaptive algorithms themselves. For instance, under burst noise condi-

tions, not only are the adaptive filters changing due to this extraneous error, but now

the entire structure is being changed because of this error. In addition, this algorithm

does not address the initialization of the new subband filters. Thus, after every shift

in subband structure, the filter has to reconverge to the optimal tap weights for a

longer period of time.

1.4 Proposed Solution

This paper proposes an algorithm for allocating subbands for use in critically

sampled systems and with a focus on signal strength rather than transition bands,

as used by the McCloud and Etter, [16]. Based on the estimates of the input and
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output power spectra, the widths of the subbands are changed in order to better suit

the unknown desired transfer function. Consequently, in bands with low signal power,

the bands are kept small in order to continue saving computations.

Tree structured analysis and synthesis banks are used in order to ease the tran-

sitioning between subband widths. In addition, to avoid unnecessary setbacks in the

convergence, the new subband filters are initialized with an effective transfer function

that approximates the total response of the old branch.

This paper is organized as follows: Chapter 2 deals with the underlying theory

of adaptive filters. Chapter 3 reviews multirate filter bank theory and the perfect

reconstruction criterion. Chapter 4 applies the subband technique to adaptive filters

as demonstrated in [20] and Chapter 5 proposes an algorithm to adjust the subband

widths and reinitialize the newly formed subband adaptive structure. Chapter 6 shows

the results of testing the algorithm under various conditions against the non-adjustable

subband filter, and finally Chapter 7 states the conclusions of the experimentation and

details additional methods to expand and optimize the proposed algorithm.
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Chapter 2

Adaptive Filtering

2.1 Adaptive Filter Theory

Adaptive filtering is a powerful tool with many applications, from beam-forming

to system identification [7]. The basic concept of adaptive filtering is to have a filter

in which the coefficients are not constant in time, and instead vary with respect to a

feedback quantity. The feedback algorithm serves to change the weights with respect

to this quantity in order to minimize a cost function. As an example, one of the most

common applications for adaptive filters is system identification, as shown in Figure

2.1. In system identification, the noisy output of an unknown filter, d[n] + v[n] is

compared to the output of the adaptive filter. The weights of the adaptive filter are

then changed with respect to the difference, e[n], between the two outputs in such a

way as to reduce that error in the next iteration. In this case, the cost function is

usually a function of the error, such as the mean square error (MSE) or the sum of

the squares.

In order to simplify the adaptive filtering problem, certain assumptions are made.

The most basic assumptions are that the filter is linear, discrete time, and has an

10



an
Unknown System, X(z) + +

vn

Adaptive System, X̂(z, en)
+− en

Figure 2.1: General Adaptive Filter as a System Identifier

FIR structure. The reason that the filter is chosen to have a finite impulse response is

because FIR filters with constant coefficients have no poles and are therefore automati-

cally stable. When connecting the feedback algorithm to change the filter coefficients,

however, even the FIR filter may become unstable. The discrete time assumption

allows for a greater flexibility provided for by the programmable nature of the algo-

rithms.

Under these assumptions, there exist a variety of adaptive algorithms to adapt the

filter coefficients in order to converge on some optimal set of tap weights. Two of the

most widely used and studied are the LMS and RLS algorithms.

2.2 Wiener Filters and LMS Filtering

Given the assumptions of linearity, discrete time and FIR structure, there exists

an optimal set of filter tap weights in the least mean squared sense for a stationary

input [7]. The least mean squares sense means that the cost function is given by:

J [n] = E
[
|e[n]|2

]
(2.1)
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As the name suggests, this is the expected value of the magnitude squared of the error

signal. Such a filter is called the Wiener filter. The Wiener-Hopf equation:

wopt = R−1 ~P (2.2)

states that the optimal set of tap weights for a filter of length M , wopt, is equal to the

inverse of the autocorrelation matrix of the past M inputs, ~u[n]:

R = E
[
~u[n]~uH[n]

]
(2.3)

multiplied by the cross-correlation vector of ~u[n] with the output, d[n]:

~P = E
[
~u[n]dH[n]

]
(2.4)

We can observe that the solution depends on a-priori knowledge of the input

and output signal statistics. Since this often not the case, adaptive methods that

approximate the Wiener filter based on sampled data have been developed. The most

common and simplest one is the LMS algorithm.

The LMS algorithm takes the sampled data taken up until time n, and makes the

approximations R ≈ ~u[n]~uH [n] and ~P ≈ ~u[n]d∗[n]. Using these approximations in

conjunction with the steepest descent method (which states that the optimal change

in ~w is in the direction of −∇J) of estimating the next step result in:

e(n) = d[n]− ~wH [n]~u(n) (2.5)

~w[n+ 1] = ~w[n] + µ~u[n]e∗[n] (2.6)

If w[n] has length K, these update equations require an effective total of 2K mul-
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tiplications to evaluate the new tap weights: K multiplications for the ~wH [n]~u[n]

operation and K + 1 more for the µ~u[n]e∗[n] operation. In this paper, single multipli-

cations such as µe∗[n] will be ignored as they are dominated by the terms that depend

on the filter length (O(K) or higher).

2.3 Kalman Filters and RLS Filtering

The RLS filter is based on the least squares (LS) curve fitting problem [7]. In the

LS problem, a curve is fit to a given set of data points by minimizing the sum of the

squares of the errors from all points to the curve. The RLS cost function to minimize

is:

J(e[n]) =
n∑
i=0

β[i]e2[i] (2.7)

where β[i] is a weight factor that tells the importance of each point in the least

squares algorithm and e[i] = d[i] − ~wH [i]~u[i] is the error of the ith iteration. In the

RLS algorithm β[i] = λn−i for 0 ≤ λ ≤ 1. The parameter λ is called the forgetting

factor and gives exponentially less credence to past error values. Larger values of λ

make the algorithm less adaptable to quick changes since past errors are considered

important for longer periods of time. The matrix inversion lemma is then used to

calculate the solution to this minimization recursively. An alternate way to view the

RLS filtering problem is as a special case of the Kalman Filter. The Kalman filter

deals with a dynamical system consisting of a non-observable internal state vector,

~x[n], and an observable noisy measurement, ~y[n]. The Kalman filter characterizes the

system by finding the estimate of the hidden state vector with the minimum mean
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squared error (MMSE). The formulation of the system is:

~x[n+ 1] = F[n+ 1, n]~x[n] + ~ν1[n] (2.8)

~y[n] = C[n]~x[n] + ~ν2[n] (2.9)

Equation (2.8) is referred to as the process equation and updates the unknown

state ~x[n]. The measurement equation (2.9) produces the observed quantity ~y[n],

known as the measurement. Here F[n + 1, n] is referred to as the state transition

matrix from n to n+1, C[n] is the measurement matrix at time n, and ~ν1[n], ~ν2[n] are

independent additive white stochastic processes with covariance matrices Q1[n],Q2[n]

respectively. The equations that define the Kalman filter are:

π[n] = K[n, n− 1]CH [n] (2.10)

Gf [n] = F[n+ 1, n]π[n] (C[n]π[n] + Q2[n])−1 (2.11)

~α[n] = ~y[n]−C[n]x̂[n|n− 1] (2.12)

x̂[n+ 1|n] = F[n+ 1, n]x̂[n|n− 1] + Gf [n]~α[n] (2.13)

K[n] = [I− F[n, n+ 1]Gf [n]C[n]] K[n, n− 1] (2.14)

K[n+ 1, n] = F[n+ 1, n]K[n]FH [n+ 1, n] + Q1[n] (2.15)

The basic idea of this algorithm is to whiten the measurement ~y[n] to form ~α[n]

(equation 2.12). Then, independent (white) segments of ~y[n] are then pieced together

to form the state estimate x̂[n+1|n] (equation (2.13)) based on the Kalman gain, Gf [n]

(equation (2.11)). The Kalman gain calculated in equation (2.11) can be thought of as

a ratio of covariances and is used to decide how much credence will be given to the new

independent piece of information (contained in the latest measurement). Equations
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(2.14) and (2.15) are used to update the estimate of the covariance matrix of x̂[n+1|n].

These updates are called the Riccati Equations.

The RLS algorithm can then be formulated as a special case of the Kalman filter

where:

F[n] = λ−1/2 (2.16)

C[n] = ~uH [n] (2.17)

~v1[n] = 0 (2.18)

~v2[n] = ν[n] (2.19)

Here λ is the forgetting factor and ν[n] is white Gaussian noise. The process and

measurement equations then become:

~x[n+ 1] = λ−
1
2~x[n] (2.20)

~y[n] = ~uH [n]~x[n] + ν[n] (2.21)

The transformation of the Kalman filtering equations is then as follows:

~x[n] → λ−
n
2 ~w[0]

~y[n] → λ−
n
2 d[n]

~ν2[n] → λ−
n
2 e∗0[n]

x̂[n+ 1|n] → λ−
n+1

2 ~w[n]

K[n] → λ−1P[n]

Gf [n] → λ−1/2 ~Gf [n]

~α[n] → λ−n/2η[n]

15



The quantity P[n] above is the inverse of the input correlation matrix:

R[n] =
n∑
i=0

λn−i~u[i]~uH [i] (2.22)

The Kalman filtering equations then yield the RLS algorithm:

~gf [n] =
P[n− 1]~u[n]

λ+ ~uH [n]P[n− 1]~u[n]
(2.23)

η[n] = d[n]− ~wH [n− 1]~u[n] (2.24)

~w[n] = ~w[n− 1] + ~gf [n]η∗[n] (2.25)

P[n] = λ−1
[
I− ~gf [n]~uH [n]

]
P[n− 1] (2.26)

We note that the total computational complexity of the RLS update equations is

3K2 +2K multiplications per iteration. This comes from the three matrix-vector mul-

tiplications (one in equation (2.23) and two in equation (2.26)) and two dot products

(one in each of equations (2.23) and (2.24)). Although the RLS algorithm has a large

increase in the computational complexity over the LMS algorithm per iteration, the

convergence time is substantially reduced.

2.4 Evaluation of Adaptive Filter Performance

With so many adaptive filter algorithms, it is necessary to have methods to com-

pare the performance of the filters. The major attributes of an adaptive filter that

can be compared are the misadjustment and the convergence rate.

As an adaptive filter converges to the optimal filter, it will eventually oscillate

about a steady state value, ~w(∞). The reason the oscillation occurs is due to the

resolution of the step size: the filter cannot converge to the exact optimal filter.
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Instead, the path about the error performance surface attempts to reach that value as

in the steepest descent, but keeps overshooting. The misadjustment is a measure of

how close this steady state value is to the theoretical optimal value ~wopt through the

corresponding minimum cost function value Jmin. Assuming J [∞] = lim
n→∞

J [n] exists,

the misadjustment M is defined as:

M =
J [∞]
Jmin

(2.27)

This equation is the ratio of the cost function evaluated at ~w(∞) and ~wopt. As

Jmin is the absolute minimum value that can be attained, the misadjustment it al-

ways greater then or equal to one. The smaller M is, the better the steady state

performance of the filter.

An alternate way to understand the steady state error is to look at the mean

squared error (MSE). The MSE is calculated by running the algorithm a number of

times and averaging the results. The result is an approximation of J [e[n]]. Since for

a given system and cost function, Jmin is constant and the misadjustment of various

algorithms can be compared by looking at the MSE after more iterations than the

convergence time.

Although the steady state performance of an adaptive filter is important, the filter

may take a long time to converge to steady state.The convergence rate gives a measure

of how fast the adaptive filter approaches the steady state conditions in the mean.

This quantity is usually measured as the average change in the MSE versus time. This

quantity becomes important when dealing with real time applications. In such cases,

it may be advantageous to use more complex algorithms that have faster convergence,

such as the RLS-based algorithms.

Often, these two parameters are difficult to quantify, leading to visual methods
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of comparing these characteristics for competing algorithms. Error curves are such a

visual aid that allow both the convergence rate and the misadjustment to be viewed si-

multaneously. The error curve plots either the magnitude of the error, d[n]−~wH [n]~u[n],

the magnitude of the error squared, or the cost function over time either linearly or

in decibels (dB). The choice of which scale to view the error curves with is dependent

on the ease of which the data it represents can be viewed. The convergence rate can

be found by observing the slope near the beginning of the curve, and the misadjust-

ment can be calculated by observing the height of the curve at large n. To observe

the misadjustments, decibel scale plots are usually optimal, since small changes in

the misadjustment are easier to see. For the convergence, large convergence rates are

easier to distinguish on a decibel scale, while slow convergence rates are easier to see

on a linear scale.

The error curves can be viewed as the output of a single trial, or as an average

of a series of runs. Single runs provide a more accurate representation of the steady

state oscillations, while the averaging method eliminates these oscillations to better

display the convergence rate and the steady state error.

An example plot is shown in Figure 2.2. This figure shows the plots of the error

magnitude, averaged over 100 trials, of four filter types: LMS, RLS, Normalized

LMS (NLMS) and RLS Adaptive Threshold Nonlinear Algorithm (RLS-ATNA). The

plot shows that the RLS based algorithms have a much higher convergence rate and

misadjustment than the LMS based algorithms. This increase in performance comes

at the cost of a much higher computational complexity.
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Figure 2.2: Error Curve Plot Comparison of Adaptive Algorithms

2.5 Variations of LMS and RLS Filters

Many derivatives of LMS and RLS, the two main adaptive algorithms, have been

established. Each of these have been tailored to special situations in order to increase

performance. Some of the algorithms are meant to deal with special noise conditions

or other environmental conditions (e.g. non-stationarity), while others are designed

to reduce the number of computations needed to run the algorithm.

Usually the variations used to increase performance are not used independently,

but in conjunction with one another. This allows for an increase in performance in

multiple areas. The issue then is that most algorithms that increase performance in

one aspect or another require significantly more computations per iteration. Thus,

although most variations can be merged together, the detriment in computational

complexity may outweigh the gain in performance. The variations used to save compu-

tations, however, may lead to poorer performance than even the standard algorithms.

Thus there is a trade-off between the computational complexity of an algorithm and
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its performance under various conditions.

One of the most basic changes to the LMS and RLS algorithms is to make the pa-

rameters, such as the step-size, time-varying [3,24]. In the case of the LMS algorithm,

this leads to the Adaptive Step Size LMS (ASS-LMS) algorithm, and in the RLS case,

this translates into the Adaptive Forgetting Factor RLS (AFF-RLS) algorithm [11,13].

The ASS-LMS algorithm deals with changing the step size µ into a function of

time, µ[n]. A very basic example is when µ[n] = µn for |µ| < 1. In this case, the

step size dies out exponentially with time. The idea here as that as the adaption

algorithm converges on the optimal tap weights, the step size decreases in order to

lower the misadjustment. The AFF-RLS algorithm considers a similar adaption in

the forgetting factor as λ = λ[n].

Another common variation, the Normalized LMS (NLMS) algorithm, normalizes

the µ~u[n]e∗[n] term by the total energy in the input vector. This effectively deals with

cases where the input signals are large. When the vector ~u[n] has large components,

the tap weights undergo large changes proportional to ~u[n]. In order to prevent this,

the input vector is instead treated as a unit vector by dividing by the norm squared

|~u[n]|2 = ~uH [n]~u[n]. This makes the step size and the error signal more dominant.

An issue here, however, arises when the the norm is very small. In this case the

tap weight change is again very large again, because of the division by a small number.

To account for this, a second parameter, δ, is introduced. The normalization factor is

then modified to [δ + |~u[n]|2]−1, where δ is a small number, but large enough to not

cause the tap weights to increase too dramatically.

In RLS and LMS filtering, the adaptation of the tap weight filters is proportional

to e[n]. Thus large errors correspond to large changes in the adaptive filter; this

problem is similar to that addressed in the NLMS algorithm with the vector ~u[n].
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For constant background noise, this does not cause too much of a problem, since the

variance of this additive noise is usually small compared to the signal. For shot noise,

however, the variance is relatively large, resulting in a very large error regardless of

the difference between the adaptive tap weights and the optimal tap weights. Shot

noise is defined as a Poisson process, where the events are characterized as additive

independent random numbers following a Gaussian distribution with a much larger

variance than the background noise (σ2
shot >> σ2

ν). Thus for regular RLS and LMS

filters, this causes the tap weights to change dramatically and the filter needs to

re-converge on the optimal filter weights.

For the RLS filter type, a derivative has been proposed to combat this effect.

The RLS-ATNA filter makes use of a nonlinear function of the error, f(e[n]) to limit

the amount by which the tap weights can change at any given iteration. Again the

comparison is made with the NLMS algorithm, where a similar term is introduced.

The difference is that the RLS-ATNA has higher adaptability within the nonlinear

section of the algorithm. For example, a closely related algorithm proposed by Koike

in [11] uses f(e[n]) = (x+ y|e[n]|k)−1, where both x and y can also be functions of n.

Figure 2.3 shows the superior performance of the NLMS and RLS-ATNA algorithms

to the regular LMS and RLS algorithms under shot noise.

Since most of the applications of adaptive filtering are real-time, the time it takes

to compute each iteration of the algorithm is important. This is directly related to the

computational complexity, or the number of addition and multiplication operations

needed for every iteration. Since it is generally accepted that multiplication operations

in very large integrated (VLSI) digital signal processing (DSP) systems take an order

of magnitude grater time to compute than addition operations, it is the number of

multiplications that usually dominate the processing time. This is because in the
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Figure 2.3: Error Curve Plot Comparison of Adaptive Algorithms with Shot Noise

simplest sense, a multiplication unit is a set of adders [9].

Based on this, methods have been devised in order to reduce the complexity of

adaptive filtering [7]. One of the main ways of accomplishing this is through batch

processing. In batch processing, each iteration is not executed as soon as the data

is collected, but instead the data is buffered. When the desired amount of data is

obtained, fast matrix operations are used instead of vector operations, allowing for

faster calculations. For example fast convolution techniques can be used over a range

of inputs instead of filtering directly [18]. Batch processing is one of the few derivatives

that focus on saving computation time rather than increasing in performance.

These batch processing techniques are intrinsically tied into frequency domain

processing. In the fast convolution case, this is manifested in performing Fast Fourier

Transforms (FFT) in order to reduce an N2 process to an N log(N) process. This

connection to frequency domain calculations leads to formation of subband adaptive

filtering techniques that will be discussed in detail in Chapter 4.
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Chapter 3

Multirate Filter Banks

3.1 Basics of Multirate Filter Banks

Multirate filter bank theory deals with methods of designing and implementing

multiple input-multiple output (MIMO) systems, with subsystems possibly running

at different rates. One specific application uses filter bank theory results to calculate

the outputs of a long FIR filter using M filters in parallel [25]. This application makes

use of the decimation and interpolation operations to change the data rates in such

a way that the filtering operation is performed quickly while maintaining the desired

output.

The interpolation and decimation operations increase and decrease, respectively,

the rate of the incoming signal. The decimation operation takes every M th sample

of the incoming signal, and drops the rest, effectively resampling the incoming sig-

nal at (1/M)th the initial rate. Thus if the initial signal had a time series h[n] =

{h[0], h[1], h[2], . . .}, the decimated signal would be h[Mn] = {h[0], h[M ], h[2M ], . . .}.
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The z-transform expression is given by:

Z [h[Mk]] =
1
M

M−1∑
m=0

H
(
z

1
M e−

2jmπ
M

)
(3.1)

where the 2mπ/M terms for m 6= 0 come from the M th roots of unity of the complex

number z. The frequency domain expression can then be found by using z = ejω,

yielding:

(↓M)H(ω) =
1
M

M−1∑
m=0

H

(
ω

M
− 2mπ

M

)
(3.2)

In equations (3.1) and (3.2) the m 6= 0 terms are referred to as the aliasing terms.

Interpolation, on the other hand, inserts M − 1 zeros between any two consecutive

samples of the incoming signal, simulating a sampling at M times the initial sampling

rate. The time domain signal is then hup[n] = h[k] if n = kM and zero otherwise.

The z-transform is then:

Z [hup[n]] = H(zM ) (3.3)

In the frequency domain this becomes:

(↑M)H(ω) = H(Mω) (3.4)

Equation (3.4) indicates M replications of the spectrum centered at 2πm/M . The

spectra at the m 6= 0 locations are called imaging terms. It is important to note that

the periodic nature of the frequency response of the discrete time Fourier transform

(DTFT) needs to be taken into account. This implies that when resampling the

signals, either aliasing or imaging can occur. For decimation, the effect is an aliasing
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of other copies into the (−π, π) range. For interpolation, the contraction brings in

duplicates of the frequency response to populate the rest of the (−π, π) range. Figure

3.1 displays this concept graphically. Thus to achieve adequate separation of specific

frequency bands, both anti-aliasing and anti-imaging filters need to be implemented.

The cutoff frequencies for these bands depend on the decimation factor being used,

since that decimation factor will dictate which spectral bands will be aliased or imaged.

Figure 3.1: Decimation and Interpolation Frequency Transformations

Figure 3.2 shows the full structure of a filter bank complete with anti-aliasing and

anti-imaging filters. In Figure 3.2, Hk(z) represents the anti-aliasing filter for the kth

band, Fk(z) represents the anti-imaging filter, Gk(z) is the kth subband filter, and

M is the resampling factor. The Hk filters comprise what is called the analysis filter

bank, while the Fk filters comprise the synthesis filter bank.

In general, not every band has to have the same decimation factor. Non-uniform

subband filters utilize different decimation factors to isolate bands of different widths.

This leads to the concept of undersampling, oversampling and critical sampling. Over-
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un

H0(z) ↓M G0(z) ↑M F0(z)

H1(z) ↓M G1(z) ↑M F1(z) ++

...
...

...
...

...

HM−1(z) ↓M GM−1(z) ↑M FM−1(z)

+
++ yn

Figure 3.2: M Channel Uniform Filter Bank

sampling is when the number of samples exiting the analysis bank is greater than the

number of samples entering. This corresponds to the sum of the inverse decimation

factors over all the bands being greater then one. Undersampling is when fewer sam-

ples leave the analysis bank than enter, (the sum of the inverse decimation factors is

less than one) and critical sampling is when exactly the same number of samples leave

as enter (the sum equals one). In terms of information retention, critical sampling

is the ideal case, since the information entering the system can always be perfectly

represented by the exiting samples with no redundancy.

Here we consider the insertion of adaptive subband filters, Gi(z), between the

analysis and synthesis banks, as shown in Figure 3.2. The analysis bank, Hi(z),

and synthesis bank, Fi(z), are then adjusted with the critical sampling constraint to

achieve a dynamical subband decomposition. The adaptive subband filters Gi(z) are

adapted by algorithms similar to the LMS and RLS algorithms in order to achieve the

underlying goals of the system.

The aliasing and imaging can also be used to the advantage of a system designer

through what are called the Noble Identities. It can be shown that feeding the output
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of a filter H(zM ) into a decimation operation (↓M) is identical to first decimating by

M , and then filtering by H(z). Similarly, zero-interpolating by M , and then filtering

by H(zM ) is equivalent to first filtering by H(z) and then interpolating by M .

This leads to one of the simplest and most effective ways to use such a filter bank

in the FIR case: polyphase decomposition. Polyphase decomposition breaks an FIR

filter into the M th polyphase components, or components which only contain samples

of the form Mn+ k for fixed k (0 ≤ k ≤M − 1). In terms of the z-transform, this is

represented as:

H(z) =
N∑
i=0

z−iEi(zM ) (3.5)

where:

Ei(z) =
N∑
l=0

alM+iz
−l (3.6)

Using this decomposition, any FIR filter can be formed made to fit in the structure

of Figure 3.2. In this specific structure (called a polyphase filter bank), the analysis

and synthesis banks simply consist of delays, while the Noble identities are used to

push the Ei(zM ) terms through the decimation operation. Thus instead of one NM

length filter with NM multiplications per time-step, M filters of length N are used.

This requires only N computations per time-step due to the resampling. This concept

will be important when the filter bank is adaptive, and adapting the center filters

separately will further reduce the number of necessary computations.

A special case of filter banks is the Quadrature Mirror Filter (QMF), or a filter

bank with only two channels where H0(z) = H1(−z) = F0(z) and F1(z) = −H1(z).

In this case the only filter required to be designed is a low-pass filter, H0(z). The
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QMF structure is popular because of the ease of satisfying certain conditions, as

will be discussed in section 3.2. More general subband decompositions can also be

constructed using embedded QMF filters. This will be discussed further in section

3.3.

3.2 The Perfect Reconstruction (PR) Condition

When a signal is broken up into its subband components, it is often desired to

have the analysis and synthesis filter banks have a minimal effect on the signal. This

leads to the idea of the perfect reconstruction (PR) condition. In essence, the PR

condition states that: a) the aliased terms usually found in the output due to the

multi-rate operations are all fully canceled out and b) the remaining total transfer

function acting on the signal is reduced to a constant gain and a delay.

The analysis bank transfer function H(z) is defined by ~Y (z) = H(z)X(z), where

X(z) is the z-transform of the input signal and ~Y (z) is the Mx1 vector consisting of

the outputs which feed into the decimation blocks. The synthesis filter bank matrix

F(z) is defined by Y (z) = F(z) ~X(z), where ~X(z) is the Mx1 vector consisting of

the outputs of the interpolation blocks and Y (z) is the output of the filter bank. By

defining Ei,k to be the kth polyphase component of the ith analysis filter, and Ri,k to

be the ith polyphase component of the kth synthesis filter, the analysis filter matrix
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H(z), and the synthesis filter matrix F(z) can be reformulated as follows:

H(z) =
[
H0(z) H1(z) . . . HM−1(z)

]T

=



E0,0(zM ) E0,1(zM ) . . . E0,M−1(zM )

E1,0(zM ) E1,1(zM ) . . . E1,M−1(zM )
...

...
. . .

...

EM−1,0(zM ) EM−1,1(zM ) . . . EM−1,M−1(zM )





z0

z−1

...

z1−M (z)


= E(z)

([
z0 z−1 . . . z1−M (z)

]T)
(3.7)

F(z) =
[
F0(z) F1(z) . . . FM−1(z)

]

=
[
z1−M z2−M . . . z0

]


R0,0(zM ) R0,1(zM ) . . . R0,M−1(zM )

R1,0(zM ) R1,1(zM ) . . . R1,M−1(zM )
...

...
. . .

...

RM−1,0(zM ) RM−1,1(zM ) . . . RM−1,M−1(zM )


=

[
z1−M z2−M . . . z0

]
R(z) (3.8)

where E(z) is the analysis polyphase matrix and R(z) is the synthesis polyphase

matrix. The PR condition can then be formulated as:

E(z)R(z) = cz−∆I (3.9)

where c and ∆ are constants [25]. For the special case of two band filter banks, as

shown in Figure 3.3, the PR condition on the analysis and synthesis filter banks is
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given by

H0(z)F0(z)−H1(z)F1(z) = 0 (3.10)

H0(z)F0(z) +H1(z)F1(z) = C (3.11)

for some constant C. In the QMF case, these constraints reduce to constraints on

H0(z), the low-pass filter, only:

H0(z)H̃0(z)−H0(−z)H̃0(−z) = 0 (3.12)

H0(z)H̃0(z) +H0(−z)H̃0(−z) = C (3.13)

un

H0(z) ↓ 2 ↑ 2 F0(z)

H1(z) ↓ 2 ↑ 2 F1(z)

+
+

ŷn

Figure 3.3: Two Channel Filter Bank

In general, the PR condition for FIR analysis and synthesis filter banks is dif-

ficult to design for. An alternative to achieve approximate PR is the near perfect

reconstruction (NPR) condition. The NPR condition is a weakened version of the PR

condition, and states that the constraints are not met precisely, but instead to within

some tolerance. Thus, although a small aliased term exists, its magnitude is below

some acceptable threshold. This allows iterative algorithms to use established FIR

filter design methods to minimize the aliased terms to within an acceptable range [1].
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3.3 Tree Structured Filter Banks

The tree structured filter bank is a structure that allows filter banks with large

numbers of subbands to be constructed from smaller filter banks with smaller numbers

of subbands. These structures can result in either uniform or non-uniform subband

decompositions. For example, by implementing a structure such as shown in Figures

3.4 and 3.5, a non-uniform subband decomposition of three bands can be obtained.

This is because the upper subband, obtained by high-pass filtering and then decimat-

ing by two, is then split again by a second embedded QMF filter bank. The result is

one half-band subband and two quarter-band subbands.

This process of embedding filter banks within filter banks can be used to obtain a

wide variety of decompositions. For example, to obtain a six channel, uniform filter

bank, two three channel filter banks can be embedded in each subband of a QMF filter

bank. The effective decimation factor for each resulting channel is then the product

of all decimation operations leading up to that channel.

un H0(z) ↓ 2 G1
0(z)

H1(z) ↓ 2 H0(z) ↓ 2 G2
0(z)

H1(z) ↓ 2 G2
1(z)

Figure 3.4: Two Tier Tree Structure Analysis Bank With Subband Filters

One of the main reasons to use tree structured filter banks is the ease of designing

for the PR condition. It can be shown that as long as each filter bank satisfies the

PR condition, the overall resulting structure also satisfies the PR condition [25]. In
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g1
0,n ↑ 2 H̃0(z)

++
yn

g2
0,n ↑ 2 H̃0(z)

++ ↑ 2 H̃1(z)

g2
1,n ↑ 2 H̃1(z)

Figure 3.5: Two Tier Tree Structure Synthesis Bank

addition, non-uniform subband decompositions satisfying the PR condition can be

realized with less effort; usually methods for creating arbitrary M channel PR filter

banks rely on cosine modulation, and result in uniform decompositions [12]. Being

able to transform small uniform decomposition filter banks into large non-uniform

decompositions greatly relieves the computational burden of designing and realizing

the desired system.
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Chapter 4

Subband Adaptive Filtering

4.1 Background

Subband adaptive filtering is a well-developed concept that uses the resampling

operations of a filter bank in order to lower the number of tap weights per adaptive

filter. For example, in echo cancellation problems, the signal is restricted to either

the bandwidth of human hearing, or the bandwidth of human speech. Thus the filter

does not need to take into account the part of the spectrum outside of this area, since

a pre-determined band-pass filter can easily cancel out any noise in that region. Thus

appropriate filter banks can isolate this band, and adapt a filter H(z) that operates

solely on that band.

For illustration, consider a system with a sampling frequency of 80KHz where the

signal of interest is in the audible range of 20-20000Hz. If an LMS-type algorithm of

length M is used, the corresponding number of multiplications per iteration would be

2M [7]. Consider then, instead, if low- and high-pass filters of length L were used to

decompose the signal in QMF form. Each of the resulting subband filters would be of

length M/2. The total number of multiplications per iteration is then L per analysis
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and synthesis filter, a total of 4L, and M per subband filter, a total of 2M . This

total is then divided by two since the system is now half-rate, for a total of 2L + M

multiplications. Thus as long as L < M/2, computational savings can be realized.

For the case of very large FIR adaptive filters, these savings are quite substantial.

In this example, additional savings can be achieved if the high-pass filter branch is

completely ignored. This is usually desired since all of the desired information is in

the lower half of the spectrum.

4.2 Uniform Subband Adaptive Filtering

In uniform adaptive filtering, the subband decomposition is done in such a way that

all the resulting subbands are of equal width. Therefore for an M band filter bank,

each of the subband filters have length dN/Me, where N is the length of an equivalent

fullband filter. These subband filters are updated with respect to the subband error

signals ei[n] = di[n] − d̂i[n]. Here di[n] is the desired output of the ith subband and

d̂i[n] is the output of the adaptive filter at the same band.

In subband adaptive filtering, both the input and desired output are passed through

an analysis filter in order to ensure that all related systems are operating at the same

rate. In general, the analysis filter for the input does not have to be identical to that of

the desired output, since the adaption occurs post-decimation. As long as the analysis

filter for the desired output and the synthesis filter satisfy the perfect reconstruction

property, all that has to match are the rates [28].

Methods have been proposed to use this freedom of design to optimize the analysis

filter for the input with respect to the MSE criterion, but here only the case where

the two analysis banks are equivalent is considered [28]. This case was chosen since

the subband adjustment algorithm presented is dependent on the input-output char-
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acteristics of the subbands of the unknown filter. Thus the power in each spectral

region of the output must be compared to the power of the same spectral region of

the input.

A variety of uniform subband algorithms have been proposed, both based on the

LMS and the RLS concepts [5, 19, 21, 23, 26]. Originally, oversampled systems have

been proposed in order to compensate for any information loss due to slight deviations

from the PR condition. Recently, though, critically sampled systems have been of more

interest as they allow for the minimum number of samples to be processed without

loss of information. For the critically sampled systems, uniform band filters have been

proposed for both the LMS and RLS algorithms. However, only LMS algorithms have

been applied to non-uniform subband structures [20].

In critically sampled systems, there are two main disadvantages to using subband

adaptive filtering. The first is an inherent increase in convergence time due to the

adaptation taking place at a slower rate. The second is an increase in the MSE due to

the lack of accounting for the aliased terms in the bands. This effect can bee seen by

relating the response of the unknown filter through the analysis bank ( ~Dideal(z)) to the

response of the analysis bank through the adaptive filters D̂(z). Here ~Dideal(z) is an

Mx1 vector whose ith entry is the ith subband component of the ideal response. D̂(z)

is the Mx1 vector containing the estimate of ~Dideal(z) (the values directly before the

synthesis filter). Defining Hi,k(z) = Hi(ze−
j(k−1)2π

M ) as the MxM matrix where Hi(z)

is the ith analysis band filter, G(z) as the MxM subband transfer function matrix,

X(z) as the MxM diagonal matrix with entries Xk,k(z) = X(ze−
j(k−1)2π

M ) where X(z)

is the unknown filter to be estimated and ~Ui(z) = U(ze−
j(k−1)2π

M ) as the Mx1 vector

where U(z) is the z-transform of the input signal, the condition that these responses
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should be equal is given by [6] as:

H(z
1
M )X(z

1
M )~U(z

1
M ) = G(z)H(z

1
M )~U(z

1
M ) (4.1)

In equation (4.1), H(z
1
M )X(z

1
M )~U(z

1
M ) is the response ideal response ~Dideal(z)

and takes into account the aliasing present due to the decimation operation. Similarly,

G(z)H(z
1
M )~U(z

1
M ) is the estimate of ~Dideal(z), D̂(z), also including aliasing effects.

By applying the transformation z → zM , the relationship H(z)X(z) = G(zM )H(z)

follows directly. In using the PR condition, F(z) = zLH−1(z) can be used to invert

H(z) to obtain equation (4.2). G(z) can be expressed by [6]:

G(zM ) = H(z)X(z)F(z) (4.2)

which is equivalent, element-wise, to:

Gi,k(z) =
M∑
l=1

Hi

(
ze

2πj(l−1)
N

)
X
(
ze

2πj(l−1)
N

)
Fl

(
ze

2πj(k−1)
N

)
(4.3)

This shows that, in general, cross-terms between all subbands are required in

order to perfectly model the unknown filter X(z). More specifically, these terms

depend on the products Hi

(
ze

2πjωl
N

)
Fl

(
ze

2πjωk
N

)
. In some special cases, such as

ideal rectangular filters with no overlaps, these cross-terms are zero and cancel out.

As an example, consider the two band case with Fi(z) = Hi(z). Equation (4.2) can

then be expressed as: [6]

G(z2) =

 H2
0 (z)X(z) +H2

1 (z)X(−z) H0(z)H1(z) (X(z) +X(−z))

H0(z)H1(z) (X(z) +X(−z)) H2
1 (z)X(z) +H2

0 (z)X(−z)

 (4.4)
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Here the off diagonal elements illustrate the dependency on the product of the filters

H0(z)H1(z).

For the LMS subband adaptive structure, the cost function is modified from that

previously presented in section 2.2 to be the mean of the sum of the squares of error

of all subbands:

J(e[n]) = E

[
M∑
i=1

|ei[M ]|2
]

(4.5)

The error in each subband is defined as the output of the subband filter in that channel

subtracted from the corresponding desired signal.

In the diagonal case, the subband filter structure is such that only one filter,

Gi,i(z), connects the output of the ith analysis bank channel to the ith synthesis bank

channel, as shown in Figure 4.1. The transfer function matrix then has the form:

G(z) =



G0(z) 0 0 . . . 0 0

0 G1(z) 0 . . . 0 0

0 0 G2(z) . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . GM−2(z) 0

0 0 0 . . . 0 GM−1(z)


(4.6)

In this case the error ei[n] is only dependent on the corresponding filter Gi,i(z).

Thus, by taking the gradient with respect to those filter weights, all the other er-

ror terms are eliminated. The resulting update equations are then the same as the

equations in section 2.2 for each channel, independently. The number of multiplica-

tions needed per iteration is calculated to be 3L + 2K/M . This is derived from the
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Figure 4.1: Diagonal Subband Filter Structure

3LM multiplications needed to calculate the output of the synthesis and two anal-

ysis banks, and the 2KM/M multiplications it takes to update M LMS filters each

of length K/M . When the factor of 1/M is accounted for (since the filter is run at

(1/M)th the total rate), the total savings in computations is 2K(M − 1)/M − 3L

multiplies.

In the diagonal structure there is a lack of the cross-terms shown in equations

(4.2) and (4.3) that allow for exact modeling of the system under general conditions.

Therefore an alternate filter structure has been proposed where the transfer function

matrix is not a diagonal matrix, but a tridiagonal matrix [6], [19]. As was shown in

equation (4.2), the cross-terms that are required to adapt to an arbitrary unknown
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filter X(ω) are dependent on the products Hi(z)Fj(z). The tridiagonal structure is

motivated by the assumption that such products are zero for |i − j| ≥ 2.Thus all

terms aside from Gl,l(z), Gl,l−1(z) and Gl,l+1(z) in equation (4.3) become zero. The

cross-terms are then introduced as shown in Figure 4.2; the corresponding transfer

function matrix is:

G(z) =



G0(z) G1(z) 0 0 . . . 0 0

G0(z) G1(z) G2(z) 0 . . . 0 0

0 G1(z) G2(z) G3(z) . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . GM−2(z) GM−1(z)

0 0 0 0 . . . GM−2(z) GM−1(z)


(4.7)

This structure uses a larger analysis bank, with M channels filtered by H2
i (z)

and M − 1 channels representing the transition regions, filtered by Hi(z)Hj(z). The

adaptive filters are then defined by Gi,j(z) = G2i−j(z) along the three main diagonals.

The cross-terms having the analysis filter banks Hi(z)Hj(z) are motivated by equation

(4.3) in the special case where Fi(z) = Hi(z). The resulting number of computations

are higher because, in addition to the filtering operations performed in the diagonal

design, each analysis filter for the input is twice as long and there are extra filtering

operation to filter the off diagonal terms.

When minimizing the cost function in the tridiagonal structure, not all the error

terms cancel out. This leads to a very large increase in the number of computations
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for the update of the subband filter tap weights. The update equations:

Ek[n] = dk[n]− ~XH
k,k[n]~Gk[n]− ~XH

k−1,k
~Gk−1[n]− ~XH

k,k+1
~Gk+1[n] (4.8)

~Gk[n+ 1] = ~Gk[n] + µk( ~Xk,kE
∗
k [n] + ~Xk−1,kE

∗
k−1[n] + ~Xk,+1kE

∗
k+1[n]) (4.9)

reflect this fact, as they are no longer simply a function of the data vector associated

with that particular subband [19]. In equations (4.8) and (4.9), ~XH
k,l is the filtered

input ~ui filtered by the cascaded filter Hk(z)Hl(z). Thus k = l imply the main

subbands, while k 6= l are the cross-terms introduced into the system. A full derivation

of the tridiagonal update equations for the case of real inputs and filter coefficients

can be found in [19].

In terms of the computational complexity, the filtering in the analysis and syn-

thesis banks increases to LM + 2L(M − 1) computations per M iterations. The LM

term comes from the extra filtering in the H2
i (z) in the analysis bank for the input,

and the 2L(M − 1)/M comes from the M − 1 cross-term filters of length 2L. The

biggest increase, though, comes from the tripling of the computations needed to up-

date the LMS filters. In the diagonal LMS subband structure, each branch entailed

2K computations. In the diagonal case, accounting for the cross-terms adds two more

terms to each equation, tripling the computations to 6K. The total computational

complexity then is (3LM + 6K)/M .

The same two topologies that were applied to the LMS subband filtering have

been applied to the RLS algorithm. In the case of the subband RLS algorithm, the

cost function to minimize is the sum of the least squares errors:

J(ei[n]) =
M−1∑
i=0

n∑
l=0

λn−li |ei[n]|2 (4.10)
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This is similar to solving M simultaneous least squares problems.

For the diagonal case, as with the LMS algorithm, the error in the ith band is

dependent only on Gi(z). Therefore the differentiation results in solely that term,

and the algorithm is identical to that in section 2.3 for each subband independently.

In the tridiagonal case the error is again dependent on both the cross-terms from

the neighboring bands. The full derivation of this algorithm by Alves and Petralgia

can be found in [23], and results in the following update equations:

~k[n] = P[n− 1]χ[n]
[
λI + χH [n]P[n− 1]χ[n]

]−1
(4.11)

P[n] = λ−1
[
I + ~k[n]χ[n]

]
P[n− 1] (4.12)

~ρ[n] = λ~ρ[n− 1] + χ[n]~d[n] (4.13)

G[n] = P[n]~ρ[n] (4.14)

where χ[n] is a tridiagonal matrix consisting of the data. Specifically, χi,k[n] = ui,k[n]

for |i−k| ≤ 1 and zero otherwise. The total computations required for the tridiagonal

subband RLS filter is given by [23] and is shown in Table 4.2.

Algorithm Fullband Diagonal Uniform Subband
LMS 2K (3LM + 2K)/M
RLS 2K2 + 5K (3LM2 + 3K2 + 2KM)/M2

Table 4.1: Number of Computations for Various Adaptive Algorithms

Algorithm Number of Computations
LMS (3LM + 6K)/M
RLS K(3M +M3 + 3M2 + 2) +M2 + 6LM − LM

Table 4.2: Number of Computations for Tridiagonal Subband Adaptive Algorithms
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4.3 Non-Uniform Subband Adaptive Filtering

In the non-uniform subband case, all of the decimation factors are unequal, as

shown in Figure 4.3. This means that different adaptive filters will be run at different

sampling rates, and over different spectral regions. Therefore the subband filters

themselves are of different lengths. As in the uniform subband case, both diagonal

and tridiagonal forms have been proposed for this subband decomposition. In the

diagonal case, taking the gradient with respect to the ith filter results in loss of all

other terms except those involving Gi,i(z).

In the tridiagonal case, however, the structure becomes more complicated than

in the uniform case. This is because branches running at different rates are added

together. Thus delays have to be placed within the cross-term connections. Further

details can be found in [20].

The motivation for the non-uniform subband decomposition is the ability of a large

subband to account for all internal cross-terms. Specifically, if one subband spans the

spectral region which a uniform subband decomposition would require multiple sub-

bands to span, the cross-terms between all those subbands would be accounted for.

The cross-terms between any two non-uniform subbands still need to be accounted

for, hence the derivation of the tridiagonal non-uniform subband filters [20]. If, how-

ever, the filtered signal U(z)Hi(z) contains no power, no aliased terms can exist and

the cross-terms disappear. Thus cross-terms are not necessary where there is no sig-

nal power, an idea that will be made use of when designing the subband allocation

algorithm in section 5.3.

With respect to the number of computations per iteration, the difference in the

rates at which all the filters are running causes two different increases. Firstly, the

branches with the smaller decimation factors have larger adaptive filter lengths. This is
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because those branches cover larger spectral regions. Secondly, for every M iterations,

the largest adaptive filters (those in the branches with the smallest decimation factors)

are updated most often. The resulting computational complexities for such algorithms

are detailed in Table 4.3.

Algorithm Number of Computations
LMS

∑N
i=1 (3Li

Mi
+ 2Ki

M2
i

)

RLS
∑N

i=1 (3Li
Mi

+ 3K2
i

M3
i

+ 2Ki
M2
i

)

Table 4.3: Number of Computations for Non-Uniform Subband Adaptive Algorithms

4.4 Properties of Subband Adaptive Filters

Regarding performance, subband adaptive filters suffer from both a longer conver-

gence time and a higher misadjustment. The reason for the slower convergence rate

is the slower rates at which the subsystems are running. If for a given signal to noise

ratio and unknown system the fullband LMS algorithm takes, say, a hundred itera-

tions to converge, running the system at half rate will mean that the entire system

converges in approximately two hundred iterations. This has been demonstrated for

both the RLS and LMS cases [21], [23]. The lower misadjustment has been attributed

to the lack of cross-terms between bands [22], [17]. Although the cross-terms intro-

duced in the tridiagonal filter bank structure seek to mitigate this, the decrease in the

steady-state error is not justified by the amount of extra computations needed [22].

The non-uniform subband decomposition is able to achieve better performance

than the uniform decomposition if the correct decomposition is chosen. In order to

compensate for the cross-terms where necessary, larger subbands can be used over

a spectral region. These larger subbands have the added benefit of increasing the

convergence rate, since those bands are run at higher rates. In addition, small sub-
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bands can be chosen over areas where there is no signal, thereby decreasing the overall

computational complexity. Taking full advantage of these benefits, though, requires

knowledge of the signal/system pair since these subbands must be set up prior to

any computations. In order to utilize the non-uniform subband decomposition more

effectively for an arbitrary system, it would be necessary to be able to change the

subband widths to suit the input-output characteristics of the unknown filter.
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Figure 4.2: Tridiagonal Subband Filter Structure
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Figure 4.3: Non-Uniform Diagonal Subband Filter Structure
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Chapter 5

Adjustable Subband Adaptive

Filtering

5.1 Motivation for Adjustable Subband Filter Banks

Both uniform and non-uniform subband adaptive filtering reduce the number of

total computations needed to adapt the filter at each time increment. The issue with

each is that they are highly dependent on the unknown systems transfer function

properties. Non-uniform subband designs are more desirable because they take all the

cross-terms in an entire band into account, while simultaneously reducing the number

of computations in the spectral regions of less interest. The problem that arises, then,

is that the input-output characteristics are not always known a-priori. Therefore, it

would be advantageous to have an algorithm which can determine these characteristics,

and adjust the filter bank bands to merge those two bands, thus accounting for cross-

terms between those spectral bands.
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5.2 Previous Work

Previous work in the area of adjustable subbands for use in non-uniform subband

adaptive filters has mostly focused on the use of oversampled systems. An algorithm

proposed by Grieshbach and Etter sought to adjust the subband decomposition in

order to minimize the mean squared error [8]; the focus of the algorithm was to

isolate transition bands of the unknown filter to reduce the misadjustment.

Following this work, a structure to ease the implementation of such algorithms was

proposed by Oakman and Naylor [17]. This structure utilizes a tree bank similar to the

one proposed here, with a similar initialization procedure. The difference, however, is

that the structure they propose keeps unused branches, simply moving out the filters

past the QMF branches. This means that the initial analysis bank remains the same

throughout the duration of computations, while the synthesis bank is the one that is

adapted.

The method used is to combine the two bands that need to be merged by moving

up the synthesis filters associated with those bands. Due to the PR condition imposed

on each QMF branch, the reduced branch effectively becomes a delay. The filter placed

at the output of the combined branch is then initialized as:

G01(z) = F0(z)C0(z2) + F1(z)C1(z2) (5.1)

The result is a framework to adjust subbands which was efficient in the sense that

minimal operations had to be performed to change the subband widths [17]. The

disadvantage to this structure is that the data is still run through the analysis and

synthesis filters of the merged bands, resulting in unnecessary computations. It would

be advantageous to be able to change the structure as proposed, but with greater care
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taken to avoid extraneous computations.

5.3 Proposed Algorithm

The algorithm proposed here utilizes a structure similar to that proposed by Oak-

man and Naylor. QMF tree structured filter banks allow for easier design of PR filter

banks as well as ease of merging in the adaptive analysis and synthesis banks. Instead

of merging bands by moving up the synthesis banks, when two bands are determined

to need to be merged the entire branch is replaced by an effective filter. This requires

a different initialization process than that proposed in [17].

In addition a decision algorithm is proposed to determine when bands should be

merged or split. This decision algorithm is based on the ratio of the power spectrum

densities of the input and the desired response. Thus any dependence on the error

signals, and thus the adaptive filter tap weights, is removed. The power spectra are

estimated using the Welch method [27], in which windowed FFT averages over time

are used to approximate the power spectra.

Subband Decomposition

In choosing the structure for the analysis and synthesis banks, a QMF based tree

topology was chosen. The tree topology allows for both the ease of the adjustment

of the subband bandwidths as well as the determination of a two bank PR filter pair.

For this system the only perfect reconstruction filters that need to be designed are one

pair of high-pass and low-pass filters. These filters would be used in every embedded

QMF bank, producing a maximum of 2Y subbands, where Y is the number of levels

in the analysis or synthesis banks.

The structure is set up by having the embedded QMF banks set up to be able
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to calculate the maximal number of coefficients. The adaptive filters then connect

the nodes of the analysis filter with the corresponding node in the synthesis bank.

When merging two bands, the strategy is to disconnect the entire embedded QMF

filter bank and to connect in its place an adaptive filter, as shown in Figure 5.1. In

this way any all-pass substructures are not performing any multiplications, thereby

saving computations.

Figure 5.1: Subband Merging by Replacement

The strategy of splitting one subband into two smaller ones of half the original

spectral length is to disconnect that adaptive filter, and to connect the next level

embedded QMF filter bank with the associated half length adaptive filters. This will

split the subband in two, reducing the computations needed to update that spectral

band.
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Initialization of Adjusted Filters

When merging a QMF branch, the resulting transfer function needs to be deter-

mined from the input-output characteristics of the branch. The output of a QMF

branch, including aliasing, is given by:

Y (ω) = 1
2(F0(ω)[GM0 (2ω) +GM0 (2ω − pi)][H0(ω)U(ω) +H0(ω − π)U(ω − π)] +

F1(ω)[GM1 (2ω) +GM1 (2ω − π)][H1(ω)U(ω) +H1(ω − π)U(ω − π)]) (5.2)

Since F0, F1, H0 and H1 abide by the PR condition as previously mentioned in section

3.2, the aliased terms drop out, thus allowing for an equivalent transfer function

G2M
0 (ω) = Y (ω)/U(ω) given by:

G2M
0 (ω) = 1

2(F0(ω)[GM0 (2ω) +GM0 (2ω − π)]H0(ω)

+F1(ω)[GM1 (2ω) +GM1 (2ω − π)]H1(ω)) (5.3)

In order to approximate the resulting equivalent transfer function, the impulse

responses of GM0 , GM1 , F0, F1, H0 and H1 are calculated. This brings into question

the relative sizes of the filters. G2M
0 is twice the length of GM0 and GM1 , each of which

have length L. F0, F1, H0 and H1 have length K, and are not necessarily the same

as length as GM0 and GM1 , or a multiple thereof. This discrepancy is compensated for

by using F0,eff, F1,eff, H0,eff and H1,eff, as calculated by the series of interpolations

and decimations:

H0,eff =
(
↓ K ′

)
(Z(ω))

(
↑ L′

)
(H0) (5.4)

The interpolation by L′ and decimation by K’serve to change the length of the FFTs
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calculated for the H(z)’s and F (z)’s to the length of the FFT of G2M
0 (z). The values

of L′ and K ′ are respectively:

L′ =
2L

GCF(L,K)
(5.5)

K ′ =
K

GCF(L,K)
(5.6)

where GCF(L,K) is the greatest common factor of L and K. The low-pass filter

Z(ω), serves to smooth the zero filled interpolation.

Since the F0, F1, H0, H1, K, and L are all known prior to the start of the algorithm,

all the needed approximations to the analysis and syntheses filters of length 2iK for

1 ≤ i ≤ log2 (M) can be pre-computed. Thus no time needs to be spent calculating

this information while the algorithm is running.

When decomposing a channel into two smaller subbands, the tap weights are

initialized to zeros and no extraneous calculations need to be performed. This is

because the proposed algorithm splits a subband when there is minimal power in that

spectrum. Thus the total contribution of that band to the total output is minimal.

The only other data that needs to be initialized is the data stored in the delays

of the subband filters. This can be taken into account by storing the past 2iK inputs

for the filter in the ith level filters. Saving data in this fashion does not take any

multiplications, and the data can then be recalled easily into the filter, preventing the

need to re-converge after high errors due to starting with zeros or other data.

Power Spectral Density Estimation

In order to adjust the widths of the subbands, the spectral locations of the signal

power needs to be determined. This requires knowledge of the power spectrum den-

sity, defined as the Fourier transform of the autocorrelation function of a wide sense
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stationary (WSS) process. By definition, the autocorrelation of a WSS process only

depends on the distance in time between any two samples.

For an arbitrary process, wide sense stationarity can be assumed over short periods

of time, thus allowing for estimates of the PSD. Methods to estimate the PSD over a

time span usually center around the use of periodograms, or the squared magnitude

of the discrete fourier transform (DFT). One such method, using the magnitude of

the FFT values squared over a moving window, was proposed by Welch in [27]. In

Welch’s PSD estimation, P̂ [k], the estimate is given by:

P̂ [k] =
L

UK

K∑
j=1

|Aj [k]|2 (5.7)

where Aj [k] is the FFT of the kth windowed time frame:

Aj [k] =
L−1∑
n=0

xj [n]w[n]e−2jπk n
L (5.8)

and U is given by:

U =
1
L

L−1∑
n=0

w2[n] (5.9)

In equation (5.7) there are two degrees of freedom: the windowing function and

the number of FFT samples to average. In the PSD estimate used in the subband

adjustment algorithm, the number of terms to average is left up to the user as an

input. Thus for more stable conditions longer averages can be taken, while for less

stable conditions the number of terms to be averaged may be decreased to allow for

quicker responses to changing conditions. The windowing function was chosen to be a

simple rectangular window to avoid both extraneous computations in calculating the
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dot product between the input and the window as well as spreading the spectrum due

to convolution with the window’s frequency response.

For the FFT operations, the number of points used was determined to be twice

the maximum number subbands allowed. This quantity is set at the start of the

algorithm. This number was chosen because the desired resolution was exactly one

point per minimum size subband.

Decision Algorithm

The proposed decision algorithm was designed to change the subband decomposi-

tion in order to create large subbands in spectral regions where the signal is present,

and small subbands in the spectral regions where the signal is minimal. The large

subbands in the signal region minimize the convergence time as well as account for

cross-terms. Smaller subbands in the low power region allows savings in the number

of computations as described in section 4.3.

The algorithm makes the decisions on which subbands to merge and which sub-

bands to decompose based on the ratio of the power spectra of the input and desired

output. In this way the subband decomposition is dependent only on the input-output

characteristics of the potentially changing unknown filter, and not on the error sig-

nals. This removes any dependence of the algorithm on the current tap weights of

the adaptive filters. The decision itself is based on comparing this ratio against set

threshold values γd and γu.

In this implementation, no windowing function was used so that there would be

no associated computations. The PSD estimates can then be calculated with a total

number of 4M2 log (2M) computations by taking the FFT of the 2M blocks of input

and desired output data, and squaring the results. Blocks of length 2M were used
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in order to have the correct spectral resolution of bands of π/M . The result is then

averaged with P past calculations, which are stored in memory, to produce the PSD

estimate. The algorithm then calculated the ratio of the power spectra estimates.

This is done in order to place more weight on the bands where the output power is

much greater than the input power. In order to avoid artifacts of having small values

of the PSD estimates, regularization terms δin and δout are introduced in the PSD

ration formula:

PSDr[k] =
PSDout[k] + δout
PSDin[k] + δin

(5.10)

In particular, δin prevents the ratio from becoming excessively large for small input

power. Although δout is not necessary for this purpose, it serves to guide the choice

of the lower threshold γd. Once the algorithm calculates the ratio, the thresholding is

applied as described in the pseudocode below.
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for index goes from 1 to current number of subbands
current band power <-- Average of all PSD ratios in that band
if branch test = 0 & Not at last level

band test <-- 0 if both bands are in the same branch
if current subband = next subband & band test = 0

Change branch test to 1
else

if Band power < Lower threshold & Not at last level
Decompose band into 2 bands

else
Leave band the same size

end
end

else if branch test = 0 & At last band
if Band power < Lower threshold & Not at last level

Decompose into 2 bands
else

Leave band the same size
end

else if branch test = 1
if Average of both Branch’s power > Upper threshold & Not at first level

Consolidate branch and initialize filter
else if Both band power ratios < Lower threshold & Not at last level

Decompose both branches
else if Only previous band power ratio < lower threshold & Not at last level

Decompose last branch
else if Only current band power ratio < lower threshold & Not at last level

Decompose current
else

Leave both bands Alone
end
branch test <-- 0

end
end

First the algorithm checks to see if the two channels that are being tested are

part of the same embedded QMF bank. If it is, then the power ratio is compared to

the preset thresholding values γu and γd as shown in Figure 5.2. If the average of

the powers in both bands is greater then the upper thresholding value γu, then the

two bands are combined. This accounts for the cases that one band has a very large

power ratio while the other might have only a small ratio. In this case, it is possible
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that cross-terms between these bands need to be accounted for so when the bands are

combined, the new effective filter is calculated and used in stead of that embedded

QMF bank.

Figure 5.2: Thresholding Scheme

If the average power does not meet the previous condition, then the power ratios

are compared to the lower thresholding value γd. If either of the power ratios is

below this threshold, the band is split into two smaller bands by inserting another

embedded QMF bank. Otherwise that subband is left alone. If a filter is not part of

a pair that are in the same QMF bank, then the power ratio is only tested against

the lower threshold. This is because the merging algorithm only replaces an entire

embedded QMF bank. Thus if there are QMF banks embedded within the QMF bank

in question, the merging cannot take place.

The threshold parameters γu and γd are chosen by the user in order to give more

credence to either the computational complexity, or to the performance. Since γd

determines when a band is split, a high value would cause the decision algorithm to

favor smaller subbands. If δout is set to a number greater then zero, the PSD ratio floor

is raised to δout/δin. Thus a choice of γd ≤ δout/δin would cause the decision algorithm

to never split any subbands. γu, on the other hand, controls the bias the algorithm
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has towards merging bands. A low value would result in more merging, tending

to higher rate systems and increasing performance at the cost of the computational

complexity. A high value of γu would merge bands less often. Thus these choices are

highly dependent on the desired performance and computational complexity in any

implementation.

This decision algorithm is independent of the adaptive filtering itself, and can

run every D time steps, as desired. Therefore the computational complexity of the

PSD update is 4M2 log (2M)/D multiplications per iteration plus another M/D mul-

tiplications per iteration to calculate the ratio. The merging of the subbands is not

guaranteed to occur at every iteration, but as a worst case scenario 3K computations

will be needed to merge every pair of subbands during the same update. Therefore

the rate at which this process updates the subbands mitigates any extra computations

required by the update process. For rapidly changing systems, a value of D ≈ 2M

may be more beneficial, while for slowly changing systems, the update rate for the

subbands should be much higher.
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Chapter 6

Experimental Results

6.1 Construction of a PR Filter Bank

In order to test the subband filter schemes, first a PR filter bank had to be con-

structed. Since the tree structure was used, relatively small FIR high pass and low

pass filters on the order of approximately 50 tap weights were to be constructed. In

order to minimize the energy in the stop-band, the FIR filters were designed using a

Kaiser window. The design and analysis of the filters were implemented in MATLAB.

Table 6.1 shows the parameters used to design the initial filters and Table 6.2 shows

the coefficients of the analysis bank high pass and low pass filters. The frequency

values in Table 6.2 are on a digital normalized frequency scale with 1 corresponding

to the Nyquist bandwidth.

Parameter Low Pass Filter H0 High Pass Filter H1

Pass Band Frequency 0.4500 0.4150
Stop Band Frequency 0.5850 0.5500
Pass Band Attenuation (dB) 0.1 0.1
Stop Band Attenuation (dB) 25 25

Table 6.1: QMF Perfect Reconstruction Filter Parameters
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Filter: Low Pass Filter H0 High Pass Filter H1

h1 0.000425977502231 0.001307147423637
h2 -0.002210129015354 0.001100291098292
h3 -0.000565771466616 -0.002577044944605
h4 0.004342836573103 -0.002476563925073
h5 0.000385002046507 0.004216891571267
h6 -0.007441304015882 0.004770373908285
h7 0.000407183882700 -0.006173003560034
h8 0.011729878415436 -0.008343959895693
h9 -0.002224774388358 0.008346972383157
h10 -0.017526499242410 0.013707933967288
h11 0.005697574132323 -0.010602132788670
h12 0.025414436775626 -0.021702329126364
h13 -0.011939322732788 0.012775965919655
h14 -0.036745298923579 0.034017831704410
h15 0.023445924499667 -0.014697052292606
h16 0.055479593540590 -0.054999847943743
h17 -0.048143409201472 0.016204391880264
h18 -0.098810775045496 0.100694598915520
h19 0.135948617810551 -0.017166433321365
h20 0.462330258853221 -0.316425588177542
h21 0.462330258853221 0.517414076509360
h22 0.135948617810551 -0.316425588177542
h23 -0.098810775045496 -0.017166433321365
h24 -0.048143409201472 0.100694598915520
h25 0.055479593540590 0.016204391880264
h26 0.023445924499667 -0.054999847943743
h27 -0.036745298923579 -0.014697052292606
h28 -0.011939322732788 0.034017831704410
h29 0.025414436775626 0.012775965919655
h30 0.005697574132323 -0.021702329126364
h31 -0.017526499242410 -0.010602132788670
h32 -0.002224774388358 0.013707933967288
h33 0.011729878415436 0.008346972383157
h34 0.000407183882700 -0.008343959895693
h35 -0.007441304015882 -0.006173003560034
h36 0.000385002046507 0.004770373908285
h37 0.004342836573103 0.004216891571267
h38 -0.000565771466616 -0.002476563925073
h39 -0.002210129015354 -0.002577044944605
h40 0.000425977502231 0.001100291098292
h41 0 0.001307147423637

Table 6.2: QMF Perfect Reconstruction Filter Coefficients
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Figure 6.1: Magnitude Response of High Pass and Low Pass Filters

6.2 Consolidation of Tree Branches

Following the details of section 5.3, code was constructed to implement equations

(5.3) and (5.4). Figure 6.2 shows a trial run where white noise was passed through

both the QMF branch as well as the calculated effective filter. The plot shows that the

spectral characteristics of the outputs of both filters are essentially the same. Features

such as the peaks, bandwidth, and gain are comparable. The code may be found in

Appendix A.
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Figure 6.2: Effective Filter Comparison. Top: Output spectrum from QMF filter.
Bottom: Output spectrum from effective filter.

6.3 Performance of Uniform Subband Adaptive Filters

Both the RLS and LMS versions of the uniform subband filter structure were

implemented for comparison. The adaptive algorithms were tested against a series of

filters. The filters and their properties are shown in Table 6.3.

Figure 6.3 shows the comparison between the performance of the fullband LMS

and the subband LMS algorithm. White noise with variance σ2
u = 0.36 was used as

an input to the low-pass filter of length 236 for 4000 iterations. At iteration 4000,

the output was changed to that of the high-pass filter with length 239. The subband

decomposition of the LMS algorithm was four uniform subbands, and the step size

for both fullband and subband algorithms was chosen to be µ = 0.001. The total
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number of tap weights to be distributed amongst the subbands was chosen to be

Mceil(239/M) = 240 This overestimated the number of tap weights needed so that

any changes in the MSE were from the properties of the subband structure and not of

lack of tap weights in the adaptive filters. Figure 6.3 demonstrates both the increase

in the MSE, a difference of approximately 25dB, as well as a faster convergence rate.

It is important to note that the subband filter has an added delay from the analysis

and filter banks, as can be observed in Figure 6.3.

Figure 6.3: Comparison of Fullband LMS Filter to 4 Band Subband LMS

Figure 6.4 shows the relative performance of the 16 band RLS subband structure

to the fullband RLS structure. The two filters were run with a white test signal

having a variance σ2
u = 0.36 through the high-pass filter of length 239 for 16000

iterations, followed by the low-pass filter of length 236 for another 16000 iterations.
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The results of 10 trials were averaged to obtain the error performance curves shown.

Both RLS algorithms were initialized with an inverse covariance matrix P0 = (0.9)−1I

and forgetting factor λ = 0.99. No additive white noise was inserted into the desired

output during this run in order to better show the response of the filters. Again the

number of tap weights to be distributed was chosen by Mceil(239/M) = 240. The

error performance curve in Figure 6.4 shows that the fullband RLS structure converges

much faster, within 1000 iterations, than the subband structure, which converges in

about 3000 iterations. In addition, the steady state MSE for the fullband RLS filter

is approximately 10dB less then the subband structure. These results agree with

previously published findings [23].

Figure 6.4: Comparison of Fullband RLS Filter to 16 Band Subband RLS. Top: Total
Error in Each Filter. Bottom: Error in the RLS Subband Structure.
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6.4 Performance of Non-Uniform Subband Adaptive Fil-

ters

To test the effects of using various non-uniform subband decompositions, the adap-

tive filter was tested against the low-pass filter. The maximum decimation factor used

here was 8. [2, 8, 8, 8, 8] was chosen as the optimal choice of decimation factors, and

[8, 8, 8, 8, 2] was chosen as the suboptimal decimation factors. The algorithm was run

with a step size of µ = 0.01 for 11000 iterations and averaged over 10 trials. The signal

and noise variances were again σ2
u = 0.36 and σ2

ν = 0 to better show the characteristics

of the algorithm. The results in Figure 6.5 show that using the optimal decimation

factors both lowered the misadjustment and increased the convergence rate.

Figure 6.5: Convergence of Non-Uniform Subband Filters

The steady state error was decreased by approximately 40 dB, and the convergence

rate was increased to approximately -0.0075dB per iteration. Figure 6.5 illustrates the

importance of choosing the correct subband decomposition when using non-uniform
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filter banks.

6.5 Performance of the Adjustable Subband Algorithm

The proposed algorithm from section 5.3 was implemented in MATLAB and tested

against other subband algorithms. Unless otherwise stated the subband decomposition

was initialized to the outer QMF filter bank with subband decomposition [22]. First,

the algorithm was tested on its own to determine its functionality. Then the algorithm

was tested against the band-stop filter. The maximum allowed decimation factor

for this trial was set to 16, with the threshold and regulation values γd = 0.025,

γu = 0.125, δout = 0.001 and δin = 0.0001. The input variance, noise variance and

step size were matched to the previous tests for comparison purposes. The PSD

estimates obtained for every iteration are shown in Figure 6.6. These estimates were

taken over 50 updates, and updated every 2M = 32 time steps. The result accurately

matches the desired input output characteristics, and the floor caused by the ratio

of the regulation factors is seen. The error signals of the adaptive filters is shown in

Figure 6.7. These plots were obtained by averaging 100 trials to observe the average

behavior of the algorithm. The final subband decomposition was [2, 16, 16, 16, 16, 4].

Next the algorithm was tested against a system where the desired response changes

dramatically. The same values as the previous test were tested against a band-pass

filter of length 197 for 8000 iterations, where the desired filter was changed to a high-

pass filter of length 239. The PSD estimates of 50 past FFTs is shown in Figure

6.8. The plot shows the eventual shift in PSD responses over time as the incoming

FFTs are changed from the band-pass filter to the low-pass filter. Figure 6.9 shows

the convergence properties and the changing subbands. Approximately 80 samples

after the switch to the low pass filter, the lower half-rate filter is fully merged from
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Figure 6.6: PSD Estimates for Stop-Band Test

the eighth-rate filters, speeding up the convergence. At approximately 600 samples

after the switch, the upper half-band filter is split up in order to save computations.

Another important result displayed in Figure 6.9 is the inability of the proposed

structure to account for cross-terms in the center of the frequency range. Although a

decomposition of [4, 2, 4] or [3, 3, 3] would be optimal for this band-pass filter, these

are not possible due to the tree structure consisting of QMF subsystems: the closest

two allowable decompositions are [2, 2] and [4, 4, 4, 4].

In order to check the allocation algorithm, the algorithm was run against both a

stop-band filter and a low-pass filter. The same values were used as for the bandpass

test: γd = 0.025, γu = 0.125, δout = 0.001 and δin = 0.0001. The PSD averaging

was again done over 50 past estimates and updated every 2M = 16 iterations. The

maximum number of subbands was reduced to eight, and the resulting decompositions

are shown in Figures 6.10 and 6.11. These plots demonstrate that the algorithm can

correctly detect the extra signal component at the high frequencies and merge the
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Figure 6.7: Error Signals for Stop-Band Test. From top to bottom: Full Band Errors,
Half Band Errors, Quarter Rate Errors, Eighth Rate Errors, Sixteenth Rate Errors

bands to improve performance while retaining the smaller subbands in the stop band

region.

The adjustable subband algorithm was then tested against the uniform subband

filters. Figures 6.13 and 6.14 show examples of the relative performance. For com-

parative purposes, the values for signal power and the adaptive parameters were kept

the same as the tests shown previously for these algorithms. Figure 6.13 shows the

relative performance of uniform LMS and RLS structures with 4 bands against the

adjustable subband algorithm using a maximum of 4 bands. The desired response was

the high-pass filter.

In order to test the retention of performance for noisy systems, the three algo-
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Figure 6.8: PSD Estimates for Band-Pass to Low-Pass Test

rithms were run for 11000 iterations and averaged over 3 trials for a number of noise

variances. The uniform subband LMS and RLS algorithms were run using 4 bands.

The adjustable subband algorithm was run with a maximum allowed decomposition

of 4 subbands and the same parameters as the previous tests. Tables 6.4 and 6.5 show

that the larger variances in the additive noise raise the MSE of the results, but have

little effect on the convergence rate. The adjustable subband algorithm managed to

correctly obtain the subband decomposition that allowed it to outperform the uniform

subband LMS while maintaining a low computational complexity, as shown in Tables

6.4 and 6.5.

As a final test, the adjustable filter algorithm was tested against a time invariant

non-uniform subband LMS filter. Noiseless conditions were used, with the signal

variance again at σ2
u = 0.36 and a step size of µ = 0.01. Both subband decompositions

were initialized to [4, 4, 16, 16, 16, 16, 16, 16, 16, 16], and the adaption parameters for

the adjustable subband LMS were again set to γd = 0.025, γu = 0.125, δout = 0.001
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Filter Response Low Pass High Pass Band Pass Band Stop
Filter Filter Filter Filter

Filter Length 236 239 197 197
Pass Band Frequency 1 0.2500 0.8125 0.3704 0.3333
Pass Band Frequency 2 N/A N/A 0.6422 0.9292
Stop Band Frequency 1 0.2813 0.7813 0.3333 0.3704
Stop Band Frequency 1 N/A N/A 0.9292 0.6422
Pass Band Attenuation 1 (dB) 0.1 0.1 0.1 0.1
Pass Band Attenuation 2 (dB) N/A N/A N/A 0.2
Stop Band Attenuation 1 (dB) 60 0.1 60 60
Stop Band Attenuation 2 (dB) N/A N/A 70 N/A

Table 6.3: Test Filters for Adaptive Algorithms

Noise Variance σ2
ν 0.00009 0.00025 0.001 0.009

Uniform LMS -49dB -49dB -45dB -43dB
Uniform RLS -63dB -63dB -52dB -44dB
Adjustable Subband LMS -60dB -58dB -52dB -43dB

Table 6.4: Noise Effect on Subband Filtering MSE

Noise Variance σ2
ν 0.00009 0.00025 0.001 0.009

Uniform LMS -0.001dB/n -0.001dB/n -0.001dB/n -0.001dB/n
Uniform RLS -0.016dB/n -0.016dB/n -0.011dB/n -0.015dB/n
Adjustable Subband LMS -0.009dB/n -0.0055dB/n -0.008dB/n -0.008dB/n

Table 6.5: Noise Effect on Subband Filtering Convergence Rate (dB/n indicates
change in dB error per iteration n

Number of Computations
Per Iteration

Uniform LMS 253
Uniform RLS 11043
Adjustable Subband LMS 327.5

Table 6.6: Comparison of Computation Complexities for Noise Tests
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Figure 6.9: Error Signals for Band-Pass to Low-Pass Test. From top to bottom: Full
Band Errors, Half Band Errors, Quarter Rate Errors, Eighth Rate Errors, Sixteenth
Rate Errors

and δin = 0.0001. First the desired response was set to the low-pass filter for 10000

iterations, at which the response was changed to the high-pass filter for another 10000

iterations. 10 trials were averaged to obtain an estimated response. As seen in Figure

6.15, both filters had identical convergences over the first 10000 iterations, where

the time-invariant decomposition was well suited for the input-output characteristics

of the desired response. However when the response changed to one which the time-

invariant decomposition was ill-suited for, the adaptable algorithm was able to change

its decomposition to [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 4], giving a much better

convergence rate, as seen in Figure 6.15.
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Figure 6.10: Steady State Subband Allocation for a Stop-Band Filter
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Figure 6.11: Steady State Subband Allocation for a Low-Pass Filter
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Figure 6.12: Error Signals for Low-Pass Filter Test. From top to bottom: Full Band
Errors, Half Band Errors, Quarter Rate Errors, Eighth Rate Errors.

74



Figure 6.13: Comparison of Subband Filters from a HPF
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Figure 6.14: Comparison of Subband Filters from a HPF to a LPF
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Figure 6.15: Comparison of Adjustable Non-Uniform Subband LMS to the Time-
Invariant Non Uniform Subband LMS
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Chapter 7

Conclusions and Further Work

This thesis describes a new algorithm to adjust the non-uniform subband decom-

position of FIR filter banks for use in adaptive filter schemes. Both a structure capa-

ble of varying the subband widths, as well as an algorithm to determine the widths

to implement were designed. A tree structure with interchangeable subsystems was

proposed as a time-varying subband structure, allowing the subband widths to be

easily adjusted. The bandwidth adjustment algorithm was based off of comparing the

PSD estimates of the input and output of the unknown desired filter. The algorithm

presented was implemented in MATLAB and compared to other subband adaptive

structures utilizing either the LMS or RLS adaptive algorithms.

The subband adjustment algorithm performed successfully, matching the subband

decompositions for a variety of test filters. The only unknown filter frequency re-

sponses the algorithm was unable to adapt well for were responses in which the pass-

band crossed the center frequency, fs/4. In these cases, the inherent inability for

the the tree structure to merge bands across this frequency did not allow for those

cross-terms to be taken into account.
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The overall adaptive structure converged faster than similar uniform subband LMS

structures, but slower than the uniform subband RLS structure. The computational

complexity was also intermediary - greater than the uniform LMS algorithm but less

than the uniform RLS algorithm. The algorithm also showed improvement in track-

ing non-stationary unknown filters over the stationary non-uniform subband structure.

When the unknown filter changed its frequency response, the subband widths of the

structure using the proposed algorithm were adjusted in order to speed up the con-

vergence while the stationary subband structure converged slowly due to the now

sub-optimal subband decomposition.

Further work in adjustable subband adaptive filtering should begin by focusing

on alternate time-varying filter bank structures. Although tree structures built from

QMF filter banks obtained good results in some cases, frequency responses that cross

one fourth the sampling frequency have cross-terms that cannot be accounted for. The

use of tree structures utilizing embedded filter banks with odd numbers of subbands

is one possible approach to address this, but would suffer from a similar limitation

at fs/6 and fs/3. Ideally, an easily implementable method of combining any two

neighboring filters in a uniform M -channel filter bank should be determined, thereby

eliminating the need for tree structures.

In addition, other methods of deciding on the optimal decomposition should be

tested. For instance, if there is a large amount of memory available, a look-up table

of all the possible decompositions can be implemented. In this way, the optimal

decomposition for the calculated PSD estimates can be realized directly, without the

need to split or combine filters multiple times.
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Appendix A

MATLAB CODE

A.1 Table of Functions

Table A.1: List of MATLAB Functions

Function Name Functionality Function Calls
standardLMS.m Performs the standard LMS

algorithm.
standardRLS.m Performs the standard RLS al-

gorithm.
NLMS_alg.m Performs the standard NLMS

algorithm.
AFF_RLS_ATNA.m Performs the AFF-RLS-

ATNA algorithm.
AFinput_noise.m Calculates a vector contain-

ing background noise and shot
noise from user specified pa-
rameters.

non_stat_filt.m Calculates the output of a
non-stationary filter.

Continued on next page
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Table A.1 – continued from previous page
Function Name Functionality Function Calls
AF_testing.m Test file to compare the full-

band adaptive filters.
standardLMS.m,
standardRLS.m,
NLMS_alg.m,
AFF_RLS_ATNA.m,
AFinput_noise.m,
non_stat_filt.m

interp_zeros.m Performs zero-fill interpola-
tion.

smartinterp.m Re-samples a vector from N
samples to M samples.

eff_filt.m Calculates the effective filter
for a QMF PR filter bank.

smartinterp.m.

PRfiltbankFIR.m Generates a two band PR FIR
filter pair.

filt_bank_gen.m Generates an 2k channel fil-
ter bank using a tree structure
based on QMF bands.

PRfiltbankFIR.m
interp_zeros.m.

filt_test_create.m Generates the test filters
subbandLMSsimple2.m Implementation of a Uniform

Subband LMS Algorithm
filt_bank_gen.m,
interp_zeros.m

subbandRLSsimple2.m Implementation of a Uniform
Subband RLS Algorithm

filt_bank_gen.m,
interp_zeros.m

subbandNULMS_adapt.m Adjustable non-uniform sub-
band LMS algorithm.

filt_bank_gen.m,
subband_update.m,
interp_zeros.m

subband_update.m Updates Nonuniform Filter
Bank Decimation Factors

eff_filt.m

subband_filt_test.m Testing code for the subband
adaptive filters

subbandNULMS_adapt.m,
subbandRLSsimple2.m,
subbandLMSsimple2.m,
AFinput_noise.m,
non_stat_filt.m,
standardLMS.m,
standardRLS.m,
filt_test_create.m
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A.2 Standard LMS Algorithm

1 function [d_hat , LMS_error , w_mat] = standardLMS(u_in , d_out , w_start ,

step_size , figno , plot_opt)

2
3 % Adam Charles

4 % Standard LMS algorithm

5 %

6 % Instintanuoeus approximation of R and P.

7
8 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %% Error Checking Inputs

10
11 if size(u_in , 1) 6= 1 && size(u_in , 2) 6= 1

12 error('u_in must be a vector!');

13 elseif size(u_in , 1) == 1 && size(u_in , 2) 6= 1

14 u_in = u_in.';

15 end

16
17 if size(d_out , 1) 6= 1 && size(d_out , 2) 6= 1

18 error('d_out must be a vector!');

19 elseif size(d_out , 1) == 1 && size(d_out , 2) 6= 1

20 d_out = d_out.';

21 end

22
23 if size(w_start , 1) 6= 1 && size(w_start , 2) 6= 1

24 error('w_start must be a vector!');

25 elseif size(d_out , 1) 6= 1 && size(d_out , 2) == 1

26 w_start = w_start.';

27 end

28
29 if size(step_size , 1) 6= 1 || size(step_size , 2) 6= 1

30 error('step_size must be a scalar!');

31 end

32
33 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34 %% Initializations and Preliminary Calculations

35
36 % Take care of possible length discrepancies.

37 num_iterations = min(length(u_in), length(d_out));

38 u_in = [zeros(length(w_start) -1, 1); u_in];

39
40 % Initializations

41 w_mat = zeros(num_iterations +1, length(w_start));

42 w_mat(1, :) = w_start;
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43 d_hat = zeros(num_iterations , 1);

44 LMS_error = zeros(num_iterations , 1);

45
46
47 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

48 %% Run the Algorithm:

49
50 for index = 1: num_iterations

51 d_hat(index) = (w_mat(index , :))*(u_in(index:index+length(w_start)

-1));

52 LMS_error(index) = d_out(index) - d_hat(index);

53 w_mat(index+1, :) = w_mat(index , :) + (step_size)*...

54 (u_in(index:index+length(w_start) -1).')*conj(LMS_error(index));

55 end

56
57 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58 %% Optional Plots

59
60 if plot_opt == 1

61 figure(figno);

62 plot (1: num_iterations , [d_out , d_hat , LMS_error ]);

63 title('System Identification of an FIR Filter using Standard LMS')

64 xlabel('Index ');

65 legend('Ideal ', 'Predicted ', 'Error ')

66 end

67 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.3 Standard RLS Algorithm

1 function [d_hat , Xi, w] = standardRLS(u_vector , d_ideal , w_start ,

lambda , ∆, figno , plot_opt)

2
3 % Adam Charles

4 % standard RLS algorithm

5 % Follows the following equations:

6 %

7 % Xi(n) = d_ideal(n)-w(n-1)x(n) A Priori Error

8 % Pi(n) = P(n-1)x(n) A Priori Whitening

9 % k(n) = Pi(n)/( lambda+x_hermetian(n)*Pi(n)) Gain Vector

10 % w(n) = w(n-1) + k(n)Xi_conj(n) Weight Adaption

11 % P(n) = lambda ^(-1)[I-k(n)x_hermitian(n)]P(n-1) Riccati Update

12 %

13 %
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14
15 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 %% Error Checking of Inputs

17
18 if size(u_vector , 1) 6= 1 && size(u_vector , 2) 6= 1

19 error('u_vector must be a vector!');

20 elseif size(u_vector , 1) == 1 && size(u_vector , 2) 6= 1

21 u_vector = u_vector.';

22 end

23
24 if size(d_ideal , 1) 6= 1 && size(d_ideal , 2) 6= 1

25 error('d_ideal must be a vector!');

26 elseif size(d_ideal , 1) == 1 && size(d_ideal , 2) 6= 1

27 d_ideal = d_ideal.';

28 end

29
30 if size(w_start , 1) 6= 1 && size(w_start , 2) 6= 1

31 error('w_start must be a vector!');

32 elseif size(w_start , 1) 6= 1 && size(w_start , 2) == 1

33 w_start = w_start.';

34 end

35
36 if size(lambda , 1) 6= 1 || size(lambda , 2) 6= 1

37 error('Forgetting Factor (lambda) must be a scalar!');

38 end

39
40 if size(∆, 1) 6= 1 || size(∆, 2) 6= 1

41 error('Initial Variance (∆) must be a scalar!');

42 end

43
44 if size(figno , 1) 6= 1 || size(figno , 2) 6= 1

45 error('Figure Number (figno) must be a scalar!');

46 end

47
48 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

49 %% Initialization and Preliminary Calculations

50
51 last_time = min([ length(u_vector), length(d_ideal)]);

52
53 % Initialize vectors for efficient for -loops

54 u_vector = [zeros(length(w_start) -1, 1); u_vector ];

55 Xi = zeros(last_time , 1);

56 k = zeros(last_time+1, length(w_start));

57 w = zeros(last_time+1, length(w_start));

58 d_hat = zeros(last_time , 1);

59 P = eye(length(w_start))/∆;
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60
61 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 %% Run algorithm

63
64 for index = 2: last_time

65 d_hat(index -1) = w(index -1, :)*u_vector(index:index+length(w_start)

-1);

66 Xi(index -1) = d_ideal(index)-w(index -1, :)*u_vector(index:index+

length(w_start) -1);

67 Pi = P*u_vector(index:index+length(w_start) -1);

68 k(index , :) = Pi./( lambda+u_vector(index:index+length(w_start) -1) '*

Pi);

69 w(index , :) = w(index -1, :) + k(index , :)*conj(Xi(index -1));

70 P = lambda ^(-1)*[eye(length(w_start))-(k(index , :).')*( u_vector(

index:index+length(w_start) -1) ')]*P;

71 end

72
73 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

74 %% Optional Plotting

75
76 if plot_opt == 1

77 figure(figno);

78 plot (1: length(d_ideal), [d_ideal ,d_hat ,Xi]);

79 title('System Identification of an FIR Filter ');

80 legend('Desired ','Output ','Error ');

81 xlabel('Time Index '); ylabel('Signal Value ');

82 end

83
84 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.4 Normalized LMS Algorithm

1 function [d_hat , NLMS_error , w_mat] = NLMS_alg(u_in , d_out , w_start ,

step_size , reg_fact , figno , plot_opt)

2
3 % Adam Charles

4 % Normalized LMS algorithm

5 %

6
7 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %% Error Checking Inputs
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9
10 if size(u_in , 1) 6= 1 && size(u_in , 2) 6= 1

11 error('u_in must be a vector!');

12 elseif size(u_in , 1) == 1 && size(u_in , 2) 6= 1

13 u_in = u_in.';

14 end

15
16 if size(d_out , 1) 6= 1 && size(d_out , 2) 6= 1

17 error('d_out must be a vector!');

18 elseif size(d_out , 1) == 1 && size(d_out , 2) 6= 1

19 d_out = d_out.';

20 end

21
22 if size(w_start , 1) 6= 1 && size(w_start , 2) 6= 1

23 error('w_start must be a vector!');

24 elseif size(d_out , 1) 6= 1 && size(d_out , 2) == 1

25 w_start = w_start.';

26 end

27
28 if size(step_size , 1) 6= 1 || size(step_size , 2) 6= 1

29 error('step_size must be a scalar!');

30 end

31
32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 %% Initializations and Preliminary Calculations

34
35 % Take care of possible length discrepancies.

36 num_iterations = min(length(u_in), length(d_out));

37 u_in = [zeros(length(w_start) -1, 1); u_in];

38
39 % Initializations

40 w_mat = zeros(num_iterations +1, length(w_start));

41 w_mat(1, :) = w_start;

42 d_hat = zeros(num_iterations , 1);

43 NLMS_error = zeros(num_iterations , 1);

44
45
46 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

47 %% Run the Algorithm:

48
49 for index = 1: num_iterations

50 d_hat(index) = (w_mat(index , :))*(u_in(index:index+length(w_start)

-1));

51 NLMS_error(index) = d_out(index) - d_hat(index);

52 w_mat(index+1, :) = w_mat(index , :) + (step_size)*...

53 (u_in(index:index+length(w_start) -1).')*conj(NLMS_error(index))
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./( reg_fact + (u_in(index:index+length(w_start) -1).')*conj(

u_in(index:index+length(w_start) -1)));

54 % (u_in(index:index+length(w_start) -1).')*conj(u_in(index:index+

length(w_start) -1))

55 end

56
57 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

58 %% Optional Plots

59
60 if plot_opt == 1

61 figure(figno);

62 plot (1: num_iterations , [d_out , d_hat , NLMS_error ]);

63 title('System Identification of an FIR Filter using Standard LMS')

64 xlabel('Index ');

65 legend('Ideal ', 'Predicted ', 'Error ')

66 end

67 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.5 AFF-RLS-ATNA Algorithm

1 function [d_hat , Xi, w] = AFF_RLS_ATNA(u_vector , d_ideal , w_start ,

lambda , ...

2 lambda_adapt , ∆, non_lin_factor , leak_factor , ATNA_multiplier ,

figno , plot_opt)

3
4 % Adam Charles

5 % Adaptive Forgetting Factor (AFF) RLS algorithm

6 % RLS algorithm with added adaptive forgetting factor (lambda)

7 %

8 % [d_hat , Xi , w] = AFF_RLS(u_vector , d_ideal , w_start , lambda , ...

9 % lambda_adapt , ∆, non_lin_factor , leak_factor , ATNA_multiplier , figno ,

plot_opt)

10 % Inputs:

11 % u_vector = input vector

12 % d_ideal = output of filter to be approximated

13 % w_start = initial tap weight vector

14 % lambda = initial forgetting factor (between 0 and 1)

15 % lambda_adapt = constant in forgetting factor update

16 % ∆ = initial "covariance" matrix

17 % non_lin_factor

18 % leak_factor

19 % ATNA_multiplier

20 % figno = figure number to plot to

21 % plot_opt = 1 if plot outputs

22 % Outputs:
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23 %

24 %

25 %

26 % Follows the following equations:

27 %

28 % AFF adition

29 % FF(n) = 1 - FFc(n)

30 % FFc(n+1) = FFc(n) + rho_g*f[e(n+1);A(n+1),m]*f[e(n);A(n),m]

31 %

32 % c(n+1) = c(n) + a_c*f[e(n); A(n),m]*g(n)

33 % g(n) = P(n)*a(n)/[ lambda + a.'(n)*P(n)*a(n)]

34 % P(n+1) = (1/ lambda)[P(n) -g(n)*a.'(n)*P(n)]

35 % f[e(n); A(n),m] = e/[1+(|e|/A)^m]

36 % A(n+1) = (1-p_a)A(n) + p_a*M_a*|e(n)|

37 % p_a -> leakage , M_a -> multiplier

38 % w is the tap weight vector; a is the input; A is the threshold

parameter;

39 % lambda is the forgetting factor; P is the estimated inverse covar

matrix;

40 % k is the kalman gain;

41
42 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43 %% Error Checking

44
45 if size(u_vector , 1) == 1;

46 u_vector = u_vector.';

47 end

48
49 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50 %% Initialization and Preliminary Calculations

51
52 last_time = min([ length(u_vector), length(d_ideal)]);

53
54 % Initialize vectors for efficient for -loops

55 u_vector = [zeros(length(w_start) -1, 1); u_vector ];

56 Xi = zeros(last_time , 1);

57 k = zeros(last_time+1, length(w_start));

58 w = zeros(last_time+1, length(w_start));

59 d_hat = zeros(last_time , 1);

60 P = eye(length(w_start))/∆;

61 f_ATNA = zeros(last_time +1, length(w_start));

62 A_ATNA = 100;

63 lambda_c = 1-lambda;

64
65 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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66 %% Run algorithm

67
68 for index = 2: last_time

69 lambda = 1-lambda_c;

70 d_hat(index -1) = w(index -1, :)*u_vector(index:index+length(w_start)

-1);

71 Xi(index -1) = d_ideal(index)-w(index -1, :)*u_vector(index:index+

length(w_start) -1);

72 Pi = P*u_vector(index:index+length(w_start) -1);

73 k(index , :) = Pi./( lambda+u_vector(index:index+length(w_start) -1) '*

Pi);

74 % Difference is here: instead of Kalman*error: Kalman*f(error , A, m

)

75 f_ATNA(index -1) = Xi(index -1) /(1+( abs(Xi(index -1))/A_ATNA)^

non_lin_factor);

76 w(index , :) = w(index -1, :) + k(index , :)*conj(f_ATNA(index -1));

77 A_ATNA = (1- leak_factor)*A_ATNA + leak_factor*ATNA_multiplier*Xi(

index -1);

78
79 P = lambda ^(-1)*[eye(length(w_start))-(k(index , :).')*( u_vector(

index:index+length(w_start) -1) ')]*P;

80 if index ≥ 3

81 lambda_c = lambda_c + (lambda_adapt*f_ATNA(index -1)*f_ATNA(

index -2)*( u_vector(index:index+length(w_start) -1) ')*(k(index

, :).'))/lambda_c;

82 elseif index == 1 || index == 2

83 lambda_c = lambda_c;

84 else

85 error('Index ≤ 0');

86 end

87 end

88
89 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

90 %% Optional Plotting

91
92 if plot_opt == 1

93 figure(figno);

94 plot (1: length(d_ideal), [d_ideal ,d_hat ,Xi]);

95 title('System Identification of an FIR Filter ');

96 legend('Desired ','Output ','Error ');

97 xlabel('Time Index '); ylabel('Signal Value ');

98 end

99
100 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A.6 Noise Generating Function

1 function [total_noise] = AFinput_noise(noise_len , gauss_stats ,

pois_lambda , impulse_stats , opts)

2
3 % Adam Charles

4 % 11/3/2009

5 % Creates Noise for Adaptive filtering

6 %

7 % Background noise + Impulse noise.

8 % Impulse noise is poisson process with gaussian magnitudes

9 %

10
11 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

12 %% Decifer Inputs:

13
14 if opts (1) == 1;

15 gauss_mean = gauss_stats (1);

16 gauss_var = gauss_stats (1);

17 else

18 gauss_mean = 0;

19 gauss_var = 0;

20 end

21
22 if opts (2) == 1;

23 impulse_mean = impulse_stats (1);

24 impulse_var = impulse_stats (2);

25 else

26 impulse_mean = 0;

27 impulse_var = 0;

28 end

29
30 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

31 %% Generate Noise:

32
33 % Background Noise

34 background_noise = gauss_var*randn(noise_len , 1) + gauss_mean;

35
36 %Impulse Noise

37 impulse_times = cumsum(poissrnd(pois_lambda , noise_len , 1));

38 impulse_times2 = impulse_times(find(impulse_times ≤ noise_len));

39 impulse_vals = impulse_var*randn(length(impulse_times2), 1) +

impulse_mean;

40 impulse_noise = zeros(noise_len , 1);

41 impulse_noise(impulse_times2) = impulse_vals;
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42
43 total_noise = background_noise + impulse_noise;

44
45 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.6.1 Non-Stationary Filter Evaluation

1 function [output] = non_stat_filt(b_in , a_in , data)

2
3 % non_stat_filt filters the data through a non -stationary filter

4 %

5 % b_in has a row of neumerator coefficients for each time -step

6 % a_in has a row of denomenator coefficients for each time -step

7 % data is the data to be processed

8
9 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 %% Error Checking

11
12 [a_i , a_j] = size(a_in);

13 [b_i , b_j] = size(b_in);

14 [data_i , data_j] = size(data);

15
16 if a_i == 1

17 a_in = repmat(a_in , data_i , 1);

18 elseif a_i 6= data_i && a_i 6= 1

19 error('Number of rows of neumerator coefficients must equat number

of rows of denomenator coefficients ');

20 end

21
22 if b_i == 1

23 b_in = repmat(b_in , data_i , 1);

24 elseif b_i 6= data_i && b_i 6= 1

25 error('Number of rows of neumerator coefficients must equat number

of rows of input data');

26 end

27
28 if data_j 6= 1

29 error('Data input must be a column vector ');

30 end

31
32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 %% Run Algorithm

34
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35 % buffer inputs and outputs

36 d_eff = [zeros(b_j -1, 1);data];

37 out_eff = zeros(a_j + data_i , 1);

38
39 for index = 1: data_i

40 A0 = fliplr(a_in(index , 2:end))*out_eff ((index +1):(index+a_j -1), 1)

;

41 B0 = fliplr(b_in(index , :))*d_eff(index :(index+b_j -1), 1);

42 out_eff(a_j + index) = (B0 -A0)./( a_in(index , 1));

43 end

44
45 output = out_eff(a_j +1: end);

46
47 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.7 Fullband Testing Code

1 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %% RLS testing code:

3
4 % Clean Slate:

5 close all

6 clear

7 clc

8
9 % Options:

10 run_tests = [1 1 1 1]; % Standard LMS , Standard RLS , NLMS , AFF -RLS -ATNA

11 allow_noise = 1;

12 figno = 1;

13 stationary_filt = 0;

14 t_last = 1500;

15 num_trials = 100;

16
17 err_AFF_ATNA = 0;

18 LMS_error = 0;

19 NLMS_error = 0;

20 e_i = 0;

21
22 [pulse_noise] = AFinput_noise(t_last , [0, 0.001] , 700, [1, 25], [0,1]);

23
24 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 %% Test Inputs/Outputs

26 for index = 1: num_trials
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27
28 % Filter Selection

29 A_test = [linspace (7,7.1, t_last); linspace (5,5.1, t_last); linspace(2,

1.9, t_last); linspace (1,0.9, t_last)].';

30 B_test = [linspace (9,11, t_last); linspace(2,-2,t_last); linspace(1, 5,

t_last); linspace(3,-2,t_last)].';

31
32 % A_test = ([ linspace (7,7.1, t_last); linspace (5,5.1, t_last); linspace

(2, 1.9, t_last); linspace (1,0.9, t_last)] +...

33 % 0*[ zeros(1, floor(t_last /2)), 8*ones(1, ceil(t_last /2)); zeros(1,

floor(t_last /2)) ,...

34 % 8*ones(1, ceil(t_last /2)); zeros(1, floor(t_last /2)), 8*ones(1,

35 % ceil(t_last /2)); zeros(1, floor(t_last /2)) ,...

36
37 8*ones(1, ceil(t_last /2))]).';

38 % B_test = [linspace (9,11, t_last); linspace(2,-2,t_last); linspace(1,

5, t_last); linspace(3,-2,t_last)].';

39 % B_test = [10 -6 -5 9 -8 2 2 1 -3 1 0 -7 4 -2 3 4 2 9 1 2 -6 5 3 -5 3

2 -6 -8 0 9 -2 4];

40
41 u_in = 4*randn(t_last , 1);

42 % u_in = sin(2*pi *[1:1000]);

43
44 d_out = non_stat_filt(B_test , A_test , u_in);

45 % fdtool(B_test , A_test)

46
47 FIR_filt_size = 100;

48
49 % Freq response of ideal filter

50 W_vec = linspace(0,pi , 10000);

51 % if stationary_filt == 1

52 Htest = freqz(B_test(end , :), A_test(end , :), W_vec);

53 % end

54
55 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

56 %% Noise in the System

57
58 d_var = 0.01;

59 d_mean = 0;

60
61 [d_noise] = AFinput_noise(t_last , [0, 0.001] , 700, [1, 30], [1,0]);

62
63 % colored noise

64 if allow_noise == 1

65 d_out = d_out + d_noise + pulse_noise;

66 end

67
68 %
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69 %% Standard LMS

70
71 if run_tests (1) == 1

72 LMS_step_size = 0.0003; % Step size

73 w_start_LMS = zeros(1, FIR_filt_size); % Start Vector

74 figno = figno +1; % Incriment figure

number

75 plot_opt_LMS = 0; % Plot

76
77 [d_hat , LMS_error_temp , w_mat_LMS] = standardLMS(u_in , d_out ,

w_start_LMS , LMS_step_size ,...

78 figno , plot_opt_LMS);

79 LMS_error = LMS_error + abs(LMS_error_temp)/num_trials;

80 clear LMS_error_temp

81 end

82
83 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84 %% Normal RLS

85
86 if run_tests (2) == 1

87 w_start_RLS = zeros(1, FIR_filt_size); % start vector

88 figno = figno + 1; % Next figure

89 lambda = 0.9; % Lambda

90 ∆ = 0.1;

91
92 [y_i , e_i_temp , w_i] = standardRLS(u_in , d_out , w_start_RLS , lambda

, ∆, figno , 0);

93 e_i = e_i + abs(e_i_temp)/num_trials;

94 clear e_i_temp

95
96 end

97
98 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

99 %% NLMS

100
101 if run_tests (3) == 1

102 NLMS_step_size = 0.3; % Step size

103 w_start_NLMS = zeros(1, FIR_filt_size); % Start Vector

104 figno = figno +1; % Incriment figure

number

105 plot_opt_NLMS = 0; % Plot

106 reg_fact = 0.01; % Regulation Factor

107
108 [d_hat_NLMS , NLMS_error_temp , w_mat_NLMS] = NLMS_alg(u_in , d_out
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,...

109 w_start_NLMS , NLMS_step_size , reg_fact , figno , plot_opt_NLMS);

110 NLMS_error = NLMS_error + abs(NLMS_error_temp)/num_trials;

111 clear NLMS_error_temp

112 end

113
114 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

115 %% Koike ATNA w/ AFF

116
117 if run_tests (4) == 1

118
119 % start at w_init = zeros

120 w_start_koike = zeros(1, FIR_filt_size);

121 % reasonable forgetting factor

122 forget_fact = 0.99;

123 % Start Var

124 ∆ = 0.1;

125 % leakage , multiplier , nonlinear order

126 A_leak_AFFATNA = 2e-8;

127 A_mult_AFFATNA = 2.5e-10;

128 nonlin_order_AFFATNA = 32;

129 adapt_coeff = 1e-10;

130
131 [d_AFF_ATNA , err_AFF_ATNA_temp , w_AFF_ATNA] = AFF_RLS_ATNA(u_in ,

d_out ,...

132 w_start_koike , forget_fact , adapt_coeff , ∆,

nonlin_order_AFFATNA ,...

133 A_leak_AFFATNA , A_mult_AFFATNA , figno , 0);

134 err_AFF_ATNA = err_AFF_ATNA + abs(err_AFF_ATNA_temp)/num_trials;

135 clear err_AFF_ATNA_temp

136
137 end

138
139 end

140 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

141 %% Error Plots

142
143 err_fig = 6;

144 figure(err_fig);

145 if run_tests (1) == 1

146 figure(err_fig), hold on;

147 plot(LMS_error , 'b');

148 end

149 if run_tests (2) == 1

150 figure(err_fig), hold on;

151 plot(e_i , '--r');
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152 end

153 if run_tests (3) == 1

154 figure(err_fig), hold on;

155 plot(NLMS_error , ':k');

156 end

157 if run_tests (4) == 1

158 figure(err_fig), hold on;

159 plot(err_AFF_ATNA , '-.b');

160 legend('LMS', 'RLS', 'NLMS', 'AFF -RLS -ATNA')

161 xlabel('Index n', 'FontSize ', 12, 'FontName ', 'Times ')

162 ylabel('Absolute error |e[n]|', 'FontSize ', 12, 'FontName ', 'Times '

)

163 end

164
165 figure(err_fig), hold off;

166
167 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

168
169 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.8 Zero-Fill Interpolation Code

1 function output = interp_zeros(input , ammt , dim)

2
3 % Adam Charles

4 % 3/15/2009

5 %

6 % Inpterpolates with zero fills along the dimention 'dim '

7 % number of zeros given by (ammt -1).

8 % This function was written since MATLAB 's interp () function does not

9 % zero -fill , but instead low pass filters.

10 %

11
12 if ammt == 0

13 output = input;

14 else

15
16 [M, N] = size(input);

17
18 if dim == 1

19 output = zeros(ammt*M - ammt + 1, N);

20 output (1: ammt:end ,:) = input;

21 elseif dim == 2

22 output = zeros(M, ammt*N - ammt + 1);

23 output(:, 1:ammt:end) = input;
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24 else

25 error('Not a valid dim!');

26 end

27 end

A.9 Length Adjusting Code

1 function [h_eff] = smartinterp(h0, K)

2
3 % Adam Charles

4 % 3/8/2009

5 %

6 % [h_eff] = smartinterm(h0 , K) calculates h_eff in the following manner

:

7 %

8 % h_eff = (decimate by M/gcd(M,K)) (LPF) (interpolate by K/gcd(M,K)) (

h0)

9 %

10 % Where M = length(h0). h_eff is essentially h0 estimated with K points

,

11 % rather then M points.

12 %

13
14 gcd_num = gcd(K, length(h0));

15 dec_factor = length(h0)/gcd_num;

16 interp_factor = K/gcd_num;

17 h_temp1 = interp(h0 , interp_factor);

18 h_eff = h_temp1 (1: dec_factor:end);

19
20 % Plots were for testing purposes.

21 % plot(h0 , 'r')

22 % figure

23 % plot(h_eff , 'b')

A.10 Effective Filter Evaluation Code

1 function [g0_eff] = eff_filt(g0, g1, h0, h1, f0, f1)

2
3 % Adam Charles

4 % 3/8/2009

5 % Effective Filter Calculations

6
7 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %% Error Checking

9
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10 if length(g0) 6= length(g1)

11 error('g0 and g1 must have equal lengths!')

12 end

13
14 if (length(h0) 6= length(h1)) || (length(h0) 6= length(f0)) ||...

15 (length(h0) 6= length(f1)) || (length(h1) 6= length(f0)) ||...

16 (length(h1) 6= length(f1)) || (length(f0) 6= length(f1))

17 error('h0 , h1 , f0 , and f1 must have equal lengths!')

18 end

19
20
21 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

22 %% Calculations

23
24 % Get special lengths:

25 K = length(g0);

26 % Make all filters the desired 2*K length:

27 h0_eff = smartinterp(fftshift(abs(fft(h0))), 2*K);

28 h1_eff = smartinterp(fftshift(abs(fft(h1))), 2*K);

29 f0_eff = smartinterp(fftshift(abs(fft(f0))), 2*K);

30 f1_eff = smartinterp(fftshift(abs(fft(f1))), 2*K);

31 % Take into account imaged parts:

32 g0f = fftshift(abs(fft(g0)));

33 g1f = fftshift(abs(fft(g1)));

34 g0_mid = [g0f((floor(K/2) +1):end) , g0f , g0f (1: floor(K/2))];

35 g1_mid = [g1f((floor(K/2) +1):end) , g1f , g1f (1: floor(K/2))];

36 % Get aliased parts taken into account:

37 h0_mid = h0_eff + [h0_eff(K:end), h0_eff (1:K-1)];

38 h1_mid = h1_eff + [h1_eff(K:end), h1_eff (1:K-1)];

39 % Put tugether final effective filter:

40 g0_eff = 0.5* real(ifft(fftshift(f0_eff .* g0_mid .* h0_mid + f1_eff .* g1_mid

.* h1_mid)));

41
42 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.11 Two Band PR Filter Gererating Code

1 function [flp , fhp] = PRfiltbankFIR(opt)

2
3 % PR Filter Generators

4 %

5 % equivals: [3/100 , 0.1, 20]

6 % kaiservals: [0.45 , 0.585 , 0.415 , 0.55, 0.1, 25]

7
8
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9 % Basic LP/HP filters

10 flpspec.fp= 1/2 - 5/100; % pass -band frequency as calculated

above

11 flpspec.fst= 1/2 + 8.5/100; % stop -band frequency is 20Hz above

pass -band

12 flpspec.Ap= 0.1; % worst pass -band attenuation is 1db

13 flpspec.Ast= 25; % best stop -band attenuation is 20db

14 % generate actual filter from specs

15 flpspecs= fdesign.lowpass('fp,fst ,Ap,Ast', ...

16 flpspec.fp , flpspec.fst , flpspec.Ap , flpspec.Ast);

17 flp= design(flpspecs ,'kaiserwin ');

18
19 fhpspec.fp= 1/2 - 8.5/100; % pass -band frequency as

calculated above

20 fhpspec.fst= 1/2 + 5/100; % stop -band frequency is 20Hz

above pass -band

21
22 fhpspecs= fdesign.highpass('fst ,fp ,Ast ,Ap', ...

23 fhpspec.fp , fhpspec.fst , flpspec.Ast , flpspec.Ap);

24 fhp= design(fhpspecs ,'kaiserwin ');

25
26 if strcmp(opt , 'o')

27 w_1 = linspace(0, pi , 1000);

28 H1 = freqz(flp , w_1);

29 H2 = freqz(fhp , w_1);

30 plot(w_1 , abs(H1).^2 + abs(H2).^2);

31 fvtool(flp , fhp)

32 end

A.12 Uniform Subband Filter Generating Code

1 function [filtbank] = filt_bank_gen(M, band_type , dir , plot_opt)

2
3 % Tree Struchtured Fitler Bank.

4 %

5 %

6 %

7
8 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %% Error Checking

10
11 if strcmp(band_type , 'uniform ')

12 % Uniform Filter Bank can only have M = 2^L outputs

13 if 2^floor(log2(M)) 6= M

14 error('M must be a power of 2 for a uniform tree filter bank!')

;

15 end
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16 end

17
18 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

19 %% Base Filters

20
21 [flp , fhp] = PRfiltbankFIR('x'); % Get predesigned filters

22 h_lp = [flp.Numerator , 0]; % Extract LP filter

coefficients

23 h_hp = fhp.Numerator; % Extract HP filter coefficients

24
25 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26 %% Decimation Filter Bank:

27
28 if strcmp(band_type , 'uniform ')

29 % Uniform Bands

30 M_2 = log2(M);

31 filt_val = 0;

32 for index = 1:M

33 % disp(sprintf('Filter H%d:', index -1))

34 clear h_temp;

35 h_temp = 1;

36 filt_path = fliplr(dec2binvec(filt_val , M_2));

37 for index2 = 1:M_2

38 if filt_path(index2) == 0

39 % disp(sprintf('Layer %d is LPF with decimation %d',

index2 , index2 -1))

40 h_temp = conv(h_temp , interp_zeros(h_lp , 2^( index2 -1),

2));

41 elseif filt_path(index2) == 1

42 % disp(sprintf('Layer %d is HPF with decimation %d',

index2 , index2 -1))

43 h_temp = conv(h_temp , interp_zeros(h_hp , 2^( index2 -1),

2));

44 end

45 end

46 filt_val = filt_val + 1;

47 eval(sprintf('filtbank.H%d = h_temp;', index -1));

48 end

49 elseif strcmp(band_type , 'log')

50 % Logarithmic sized bands

51 for index = 1:M

52 clear h_temp;

53 if index == 1

54 h_temp = h_hp;

55 elseif index == 2

56 h_temp = conv(h_lp , interp_zeros(h_hp , index , 2));
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57 elseif index > 2 && index < M

58 h_temp = h_lp;

59 for index2 = 2:index -1

60 h_temp = conv(h_temp , interp_zeros(h_lp , 2^( index2 -1),

2));

61 end

62 h_temp = conv(h_temp , interp_zeros(h_hp , 2^(index -1), 2));

63 elseif index == M

64 h_temp = 1;

65 for index2 = 1:index -1

66 h_temp = conv(h_temp , interp_zeros(h_lp , 2^( index2 -1),

2));

67 end

68 end

69 eval(sprintf('filtbank.H%d = h_temp;', index -1));

70 end

71 end

72
73 if strcmp(dir , 's')

74 % Leave Filter Bank Alone

75 end

76
77 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

78 %% Synthesis Filter

79
80 if strcmp(dir , 's')

81 % F(z) = z^(-N)H_para(z)

82 for index = 1:M

83 eval(sprintf('filtbank.H%d = fliplr(conj(filtbank.H%d));',

index -1, index -1));

84 end

85 end

86
87 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

88 %% Plotting Options

89
90 if plot_opt

91 plot_string = 'fvtool(filtbank.H0, 1';

92 w_1 = linspace(0, pi , 1000);

93 H_sum = abs(freqz(filtbank.H0 , 1, w_1)).^2;

94 for index = 2:M

95 plot_string = sprintf('%s, filtbank.H%d, 1', plot_string , index

-1);

96 eval(sprintf('H_sum = H_sum + abs(freqz(filtbank.H%d, 1, w_1))

.^2;', index -1));

97 end
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98 plot(w_1 , H_sum);

99 plot_string = sprintf('%s);', plot_string);

100 disp(plot_string)

101 eval(plot_string);

102 end

103
104 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.13 Uniform Subband LMS Algorithm

1 function [output , output_error] = subbandLMSsimple2(u_in , d_ideal ,...

2 step_size , w_start , num_bands , band_type)

3
4 % Adam Charles

5 % 2/26/2009

6 %

7 % Subband LMS Filtering.

8 %

9 % Filters through Filterbank with M = num_bands , then performs LMS

10 % filtering on each subband seperately. Those results are then put

through

11 % the synthesis filter to get the final outpt y(n).

12 %

13 % For the matricies used , each row indicates the subband -1 (row 1 is

14 % subband 0), and the column represents the iteration. The updates are

15 % essentially round robin , as they start at H_0 , work up to H_{M-1},

then

16 % go back to H_0.

17 %

18
19
20 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 %% Error Checking

22
23 if strcmp(band_type , 'uniform ')

24 % Uniform Filter Bank can only have M = 2^L outputs

25 if 2^floor(log2(num_bands)) 6= num_bands

26 error('M must be a power of 2 for a uniform tree filter bank!')

;

27 end

28 end

29
30 % Make sure u_in is a vector

31 if size(u_in , 1) 6= 1 && size(u_in , 2) 6= 1

32 error('u_in must be a vector!');
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33 elseif size(u_in , 1) == 1 && size(u_in , 2) 6= 1

34 u_in = u_in.';

35 end

36
37 % Make sure d_ideal is a vector

38 if size(d_ideal , 1) 6= 1 && size(d_ideal , 2) 6= 1

39 error('d_ideal must be a vector!');

40 elseif size(d_ideal , 1) == 1 && size(d_ideal , 2) 6= 1

41 d_ideal = d_ideal.';

42 end

43
44 % Check size of w_start

45 if size(w_start , 1) 6= num_bands && size(w_start , 2) 6= num_bands

46 error('w_start must be a vector!');

47 elseif size(w_start , 1) 6= num_bands && size(w_start , 2) == num_bands

48 w_start = w_start.'; % w's as row vectors

49 elseif isscalar(w_start)

50 error('One tap is useless!')

51 end

52
53 if ¬isscalar(step_size)
54 error('step_size must be a scalar!');

55 end

56
57
58 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 %% Prior Calculations and Initializations

60
61 % Initialize Tap Weight Matrix

62 w_mat = w_start;

63
64 % Calculate numbwe of 'time steps ' or # times to updaye all filter

banks

65 num_update_iters = floor(min(length(u_in), length(d_ideal))/num_bands);

66 % Pad input vector

67 u_in = [zeros(num_bands*size(w_start , 2) -1, 1); u_in];

68 d_hat = zeros(num_update_iters , num_bands);

69 LMS_error = zeros(num_bands , num_update_iters);

70
71 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

72 %% Run Inputs and Outputs through Filter Banks:

73
74 [filtbank_dec] = filt_bank_gen(num_bands , 'uniform ', 'f', 0);

75 [filtbank_syn] = filt_bank_gen(num_bands , 'uniform ', 's', 0);

76
77
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78 % fvtool(filtbank_dec.H0 , 1, filtbank_dec.H1 , 1)

79 % fvtool(filtbank_syn.H0 , 1, filtbank_syn.H1 , 1)

80
81
82 for index = 1: num_bands

83 % Filter through the kth filter bank filter

84 eval(sprintf('u_filt1.H%d = filter(filtbank_dec.H%d, 1, u_in);',

index -1, index -1));

85 eval(sprintf('d_filt1.H%d = filter(filtbank_dec.H%d, 1, d_ideal);',

index -1, index -1));

86 % Decimate by M

87 eval(sprintf('u_dec.H%d = u_filt1.H%d(1: num_bands:end);', index -1,

index -1));

88 eval(sprintf('d_dec.H%d = d_filt1.H%d(1: num_bands:end);', index -1,

index -1));

89 end

90
91 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

92 %% LMS Filtering

93
94 for index = 1: num_update_iters

95 for index2 = 1: num_bands

96 eval(sprintf('d_hat(index2 , index) = (w_mat(index2 , :))*( u_dec.

H%d(index:index+size(w_mat , 2) -1));', index2 -1));

97 eval(sprintf('LMS_error(index2 , index) = d_dec.H%d(index) -

d_hat(index2 , index);', index2 -1));

98 eval(sprintf('w_mat(index2 , :) = w_mat(index2 , :) + (step_size)

*( u_dec.H%d(index:index+size(w_mat , 2) -1).'')*conj(LMS_error

(index2 , index));', index2 -1));

99 end

100 end

101
102
103 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104 %% Filter/Interpolate Outputs:

105
106 d_out_sum = 0;

107 d_ideal_sum = 0;

108 for index = 1: num_bands

109 % Interpolate by M: use function

110 eval(sprintf('d_syn.H%d = interp_zeros(d_hat(%d, :), num_bands , 2);

', index -1, index));

111 eval(sprintf('d_ideal_syn.H%d = interp_zeros(d_dec.H%d, num_bands ,

1);', index -1, index -1));

112 % Filter through the kth synthesis bank filter

113 eval(sprintf('d_filt2.H%d = filter(filtbank_syn.H%d, 1, d_syn.H%d);
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', index -1, index -1, index -1));

114 eval(sprintf('d_ideal_filt1.H%d = filter(filtbank_syn.H%d, 1,

d_ideal_syn.H%d);', index -1, index -1, index -1));

115 eval(sprintf('d_out_sum = d_out_sum + d_filt2.H%d;', index -1));

116 eval(sprintf('d_ideal_sum = d_ideal_sum + d_ideal_filt1.H%d;',

index -1));

117 end

118
119 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

120 %% Specify Outputs:

121
122 output.out = d_out_sum;

123 output.ideal = d_ideal_sum;

124 % size(d_ideal_sum) , (1: length(d_out_sum))

125 % size(d_out_sum)

126 output_error.full = d_ideal_sum.' - d_out_sum;

127 output_error.subbands = LMS_error;

128
129 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.14 Uniform Subband RLS Algorithm

1 function [output , output_error] = subbandRLSsimple2(u_in , d_ideal ,...

2 forget_factor , ∆, w_start , num_bands)

3
4 % Adam Charles

5 % 2/26/2009

6 %

7 % Subband RLS Filtering.

8 %

9 % Filters through Filterbank with M = num_bands , then performs RLS

10 % filtering on each subband seperately. Those results are then put

through

11 % the synthesis filter to get the final outpt y(n).

12 %

13 % For the matricies used , each row indicates the subband -1 (row 1 is

14 % subband 0), and the column represents the iteration. The updates are

15 % essentially round robin , as they start at H_0 , work up to H_{M-1},

then

16 % go back to H_0.

17 %

18
19
20 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

105



21 %% Error Checking

22
23
24 % Uniform Filter Bank can only have M = 2^L outputs

25 if 2^floor(log2(num_bands)) 6= num_bands

26 error('M must be a power of 2 for a uniform tree filter bank!');

27 end

28
29
30 % Make sure u_in is a vector

31 if size(u_in , 1) 6= 1 && size(u_in , 2) 6= 1

32 error('u_in must be a vector!');

33 elseif size(u_in , 1) == 1 && size(u_in , 2) 6= 1

34 u_in = u_in.';

35 end

36
37 % Make sure d_ideal is a vector

38 if size(d_ideal , 1) 6= 1 && size(d_ideal , 2) 6= 1

39 error('d_ideal must be a vector!');

40 elseif size(d_ideal , 1) == 1 && size(d_ideal , 2) 6= 1

41 d_ideal = d_ideal.';

42 end

43
44 % Check size of w_start

45 if size(w_start , 1) 6= num_bands && size(w_start , 2) 6= num_bands

46 error('w_start must be a vector!');

47 elseif size(w_start , 1) 6= num_bands && size(w_start , 2) == num_bands

48 w_start = w_start.'; % w's as row vectors

49 elseif isscalar(w_start)

50 error('One tap is useless!')

51 end

52
53 if ¬isscalar(forget_factor)
54 error('forget_factor must be a scalar!');

55 end

56
57 if ¬isscalar(∆)

58 error('∆ must be a scalar!');

59 end

60
61 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

62 %% Prior Calculations and Initializations

63
64 % Initialize Tap Weight Matrix

65 w_mat = w_start;

66
67 % Calculate numbwe of 'time steps ' or # times to updaye all filter
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banks

68 num_update_iters = floor(min(length(u_in), length(d_ideal))/num_bands);

69 % Pad input vector

70 u_in = [zeros(num_bands*size(w_start , 2) -1, 1); u_in];

71 d_hat = zeros(num_update_iters , num_bands);

72 RLS_error = zeros(num_bands , num_update_iters);

73 P0 = eye(size(w_mat , 2))/∆;

74 kal_gain = 0;

75 pi_vec = 0;

76
77 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

78 %% Run Inputs and Outputs through Filter Banks:

79
80 [filtbank_dec] = filt_bank_gen(num_bands , 'uniform ', 'f', 0);

81 [filtbank_syn] = filt_bank_gen(num_bands , 'uniform ', 's', 0);

82
83 for index = 1: num_bands

84 % Filter through the kth filter bank filter

85 eval(sprintf('u_filt1.H%d = filter(filtbank_dec.H%d, 1, u_in);',

index -1, index -1));

86 eval(sprintf('d_filt1.H%d = filter(filtbank_dec.H%d, 1, d_ideal);',

index -1, index -1));

87 % Decimate by M

88 eval(sprintf('u_dec.H%d = u_filt1.H%d(1: num_bands:end);', index -1,

index -1));

89 eval(sprintf('d_dec.H%d = d_filt1.H%d(1: num_bands:end);', index -1,

index -1));

90 end

91
92 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

93 %% RLS Filtering

94
95 for index = 1: num_update_iters

96 for index2 = 1: num_bands

97 eval(sprintf('kal_gain = (P0*(u_dec.H%d(index:index+size(w_mat ,

2) -1)))/( forget_factor + (u_dec.H%d(index:index+size(w_mat ,

2) -1))''*P0*( u_dec.H%d(index:index+size(w_mat , 2) -1)));',

index2 -1, index2 -1, index2 -1));

98 eval(sprintf('d_hat(index2 , index) = (w_mat(index2 , :))*( u_dec.

H%d(index:index+size(w_mat , 2) -1));', index2 -1));

99 eval(sprintf('RLS_error(index2 , index) = d_dec.H%d(index) -

d_hat(index2 , index);', index2 -1));

100 eval(sprintf('w_mat(index2 , :) = w_mat(index2 , :) + kal_gain.''

*conj(RLS_error(index2 , index));'));

101 eval(sprintf('P0 = (eye(size(w_mat , 2)) - kal_gain *(u_dec.H%d(

index:index+size(w_mat , 2) -1))'')*P0/forget_factor;', index2
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-1));

102 end

103 end

104
105 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

106 %% Filter/Interpolate Outputs:

107
108 d_out_sum = 0;

109 d_ideal_sum = 0;

110 for index = 1: num_bands

111 % Interpolate by M: use function

112 eval(sprintf('d_syn.H%d = interp_zeros(d_hat(%d, :), num_bands , 2);

', index -1, index));

113 eval(sprintf('d_ideal_syn.H%d = interp_zeros(d_dec.H%d, num_bands ,

1);', index -1, index -1));

114 % Filter through the kth synthesis bank filter

115 eval(sprintf('d_filt2.H%d = filter(filtbank_syn.H%d, 1, d_syn.H%d);

', index -1, index -1, index -1));

116 eval(sprintf('d_ideal_filt1.H%d = filter(filtbank_syn.H%d, 1,

d_ideal_syn.H%d);', index -1, index -1, index -1));

117 eval(sprintf('d_out_sum = d_out_sum + d_filt2.H%d;', index -1));

118 eval(sprintf('d_ideal_sum = d_ideal_sum + d_ideal_filt1.H%d;',

index -1));

119 end

120
121 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

122 %% Specify Outputs:

123
124 output.out = d_out_sum;

125 output.ideal = d_ideal_sum;

126 output_error.full = d_ideal_sum (1: length(d_out_sum)).' - d_out_sum;

127 output_error.subbands = RLS_error;

128
129 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.15 Adjustable Non-Uniform Subband LMS Algorithm

1 function [output , output_error , fin_dec_vals] = subbandNULMS_adapt(u_in

, d_ideal ,...

2 step_size , w0_len , num_bands_max , start_dec_factrs , PSD_mem ,

thresh_vals)

3
4 % Adam Charles
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5 % 3/21/2009

6 %

7 % Adjustable Nonuniform Subband LMS Filtering.

8 %

9 % Filters through Filterbank with M = num_bands , then performs LMS

10 % filtering on each subband seperately. Those results are then put

through

11 % the synthesis filter to get the final outpt y(n).

12 %

13 % For the matricies used , each row indicates the subband -1 (row 1 is

14 % subband 0), and the column represents the iteration. The updates are

15 % essentially round robin , as they start at H_0 , work up to H_{M-1},

then

16 % go back to H_0.

17 %

18
19
20 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21 %% Error Checking

22
23
24 % Uniform Filter Bank can only have M = 2^L outputs

25 if 2^floor(log2(num_bands_max)) 6= num_bands_max

26 error('M must be a power of 2 for a uniform tree filter bank!');

27 end

28
29 for index_check = 1: length(start_dec_factrs)

30 if 2^floor(log2(start_dec_factrs(index_check))) 6= start_dec_factrs(

index_check)

31 error('Decimation Factors must be a power of 2 for a uniform

tree filter bank!');

32 end

33 end

34
35 % Make sure u_in is a vector

36 if size(u_in , 1) 6= 1 && size(u_in , 2) 6= 1

37 error('u_in must be a vector!');

38 elseif size(u_in , 1) == 1 && size(u_in , 2) 6= 1

39 u_in = u_in.';

40 end

41
42 % Make sure d_ideal is a vector

43 if size(d_ideal , 1) 6= 1 && size(d_ideal , 2) 6= 1

44 error('d_ideal must be a vector!');

45 elseif size(d_ideal , 1) == 1 && size(d_ideal , 2) 6= 1

46 d_ideal = d_ideal.';

47 end

48
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49
50 if ¬isscalar(step_size)
51 error('step_size must be a scalar!');

52 end

53
54 if sum (1./ start_dec_factrs) 6= 1

55 error('Not a valid starting point!')

56 end

57
58 if floor(w0_len/num_bands_max) 6= w0_len/num_bands_max

59 error('w0_len must be divisable by the max number of bands!')

60 end

61
62 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

63 %% Prior Calculations and Initializations

64
65 % Calculate number of 'time steps ' or # times to updaye all filter

banks

66 % LMS related cariables

67 num_update_iters = floor(min(length(u_in), length(d_ideal))/

num_bands_max);

68 d_hat = zeros(num_update_iters , num_bands_max);

69 LMS_error = zeros(num_bands_max , num_update_iters);

70 dec_factors = start_dec_factrs;

71 n_per_band = num_bands_max *( dec_factors);

72 PSDin_est = zeros(1, 2* num_bands_max);

73 PSDout_est = zeros(1, 2* num_bands_max);

74 u_max_eff = num_bands_max*floor(length(u_in)/num_bands_max);

75
76 % Feedback related variables

77 PSD_mem_in = zeros (2* num_bands_max , PSD_mem);

78 PSD_mem_out = zeros (2* num_bands_max , PSD_mem);

79 PSD_array_in =zeros(num_bands_max , floor(num_update_iters /2));

80 PSD_array_out = zeros(num_bands_max , floor(num_update_iters /2));

81 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

82 %% Set up Filter Banks and Initialize Memory:

83
84 [filtbank_bin_dec] = filt_bank_gen (2, 'uniform ', 'f', 0);

85 [filtbank_bin_syn] = filt_bank_gen (2, 'uniform ', 's', 0);

86
87 % Each synthesis/analysis filter needs length(filtbank_bin_dec) ammount

of memory

88 % the i^th level has 2^i filters in it (2 for 1st level , 4 for second

...)

89 % First column cooresponds to the 'bottom ' branch , or lowest spectral

band.
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90 for index = 1:log2(num_bands_max)

91 eval(sprintf('analysis_data.level%d = zeros(floor(u_max_eff /(2^

index))+w0_len /(2^ index), 2^ index);', index));

92 eval(sprintf('ideal_analysis_data.level%d = zeros(floor(length(

d_ideal)/(2^ index)), 2^ index);', index));

93 eval(sprintf('ideal_synthesis_data.level%d = zeros(floor(u_max_eff

/(2^ index)), 2^index);', index));

94 eval(sprintf('synthesis_data.level%d = zeros(floor(u_max_eff /(2^

index)), 2^ index);', index));

95 eval(sprintf('LMS_error.level%d = zeros(floor(u_max_eff /(2^ index)),

2^index);', index));

96 eval(sprintf('w_array.level%d = zeros(w0_len /(2^ index), 2^ index);',

index));

97 end

98
99 eval(sprintf('analysis_data.level0 = [zeros(w0_len -1, 1); u_in];'));

100 eval(sprintf('ideal_analysis_data.level0 = d_ideal;'));

101 eval(sprintf('synthesis_data.level0 = zeros(u_max_eff , 1);'));

102 eval(sprintf('ideal_synthesis_data.level0 = zeros(u_max_eff , 1);'));

103 eval(sprintf('LMS_error.level0 = zeros(u_max_eff , 1);'));

104 eval(sprintf('w_array.level0 = zeros(w0_len , 2^ index);'));

105
106
107 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

108 %% Get Signal at Each Node in the Analysis Tree

109
110 disp('Analysis Filter Start ')

111 for index = 1:log2(num_bands_max)

112 for index2 = 1: index

113 % Input Analysis Processing

114 eval(sprintf('temp_LP = filter(filtbank_bin_dec.H0 , 1,

analysis_data.level%d(:, index2));', index -1));

115 eval(sprintf('temp_HP = filter(filtbank_bin_dec.H1 , 1,

analysis_data.level%d(:, index2));', index -1));

116 eval(sprintf('analysis_data.level%d(:, (2*index2 -1)) = temp_LP

(1:2: end);', index));

117 eval(sprintf('analysis_data.level%d(:, 2* index2) = temp_HP (1:2:

end);', index));

118 clear temp_HP temp_LP

119 % Ideal Output Analysis Processing

120 eval(sprintf('temp_DLP = filter(filtbank_bin_dec.H0, 1,

ideal_analysis_data.level%d(:, index2));', index -1));

121 eval(sprintf('temp_DHP = filter(filtbank_bin_dec.H1, 1,

ideal_analysis_data.level%d(:, index2));', index -1));

122 eval(sprintf('ideal_analysis_data.level%d(:, (2* index2 -1)) =

temp_DLP (1:2: end);', index));

123 eval(sprintf('ideal_analysis_data.level%d(:, 2* index2) =

temp_DHP (1:2: end);', index));

111



124 clear temp_DHP temp_DLP

125 end

126 end

127 disp('Analysis Filter End')

128
129 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

130 %% Run Algorithm

131
132 disp('LMS Filter Start')

133 for index = 1: num_update_iters

134 % Number in dec_factors is decimation factor bands: also number of

times

135 % that band is updated per iteration. e.g. num_update_iters /[2, 4,

4] =

136 % [2, 1, 1]...

137 for index2 = 1: length(dec_factors)

138 for index3 = 1:( num_bands_max/dec_factors(index2))

139 %% LMS Algorithm

140 % Data into the filter is from

141 % analysis_data.level[log2(dec_factors(index2))]()

142 % Ideal Output is from

143 % ideal_analysis_data.level[log2(dec_factors(index2))]

144 % Output goes into

145 % synthesis_data.level[log2(dec_factors(index2))]

146 % Filter is w_array.level[log2(dec_factors(index2))]

147 % Branch number is 1 + sum (1./ dec_factors (1: index2))*

dec_factors(index2)

148 dec_factors2 = [inf , dec_factors ];

149 branch_num = 1 + sum (1./ dec_factors2 (1: index2))*dec_factors

(index2);

150 u_pos_back = (index -1)*num_bands_max/dec_factors(index2) +

index3;

151 % dec_factors;

152 u_pos = u_pos_back + w0_len /( dec_factors(index2));

153 % Evaluate output

154 eval(sprintf('ideal_synthesis_data.level%d(u_pos_back ,

branch_num) = ideal_analysis_data.level%d(u_pos_back ,

branch_num);'...

155 , log2(dec_factors(index2)), log2(dec_factors(index2)))

)

156 eval(sprintf('synthesis_data.level%d(u_pos_back , branch_num

) = w_array.level%d(:, branch_num)''*analysis_data.level

%d(( u_pos_back +1):u_pos , branch_num);'...

157 , log2(dec_factors(index2)), log2(dec_factors(index2)),

log2(dec_factors(index2)) ));

158 % Get error

159 eval(sprintf('LMS_error.level%d(u_pos_back , branch_num) =

ideal_analysis_data.level%d(u_pos_back , branch_num) -
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synthesis_data.level%d(u_pos_back , branch_num);'...

160 , log2(dec_factors(index2)), log2(dec_factors(index2)),

log2(dec_factors(index2)) ));

161 % Update tap weights:

162 eval(sprintf('w_array.level%d(:, branch_num) = w_array.

level%d(:, branch_num) + step_size*analysis_data.level%d

(( u_pos_back +1):u_pos , branch_num)*conj(LMS_error.level%

d(u_pos_back , branch_num));'...

163 , log2(dec_factors(index2)), log2(dec_factors(index2)),

log2(dec_factors(index2)), log2(dec_factors(index2)

) ));

164 end

165 end

166 %% Place Feedback HERE

167 %Update PSD arrays every other full iteration (sice we need

168 %2* num_bands_max) new samples for new window.

169 if index == 2*floor(index /2) && (index + 2)*num_bands_max - 1 ≤

length(u_in)

170 % Calculate net FFT^2 for pwelch -type PSD estimate:

171 temp_PSDin = fftshift(abs(fft(u_in(index*num_bands_max :( index

+2)*num_bands_max -1))).^2);

172 temp_PSDout = fftshift(abs(fft(d_ideal(index*num_bands_max :(

index +2)*num_bands_max -1))).^2);

173 % Update PSD estimate memory array

174 PSD_mem_in = [temp_PSDin , PSD_mem_in (:, 1:(end -1))];

175 PSD_mem_out = [temp_PSDout , PSD_mem_out (:, 1:(end -1))];

176 % Take mean of past K FFT^2 to get PSD approximate at time N

177 PSD_array_in (:, index) = mean(PSD_mem_in(num_bands_max +1:2*

num_bands_max , :), 2);

178 PSD_array_out (:, index) = mean(PSD_mem_out(num_bands_max +1:2*

num_bands_max , :), 2);

179 % PSD_array_out (:, index)./ PSD_array_in (:, index)

180 % And now the important part: make a decision for the new

181 % dec_factors vector !! This is a function of the PSD_INest ,

182 % PSD_OUTest , current dec_factorsand possible some black magic.

183 [dec_factors_new , w_new] = subband_update(dec_factors , w_array

,...

184 PSD_array_in (:, index), PSD_array_out (:, index),

thresh_vals ,...

185 num_bands_max , filtbank_bin_syn.H0, filtbank_bin_syn.H1);

186 dec_factors = dec_factors_new;

187 w_array = w_new;

188 end

189 % if index == 100

190 % dec_factors = [8 8 8 8 4 4];

191 % w_array.level1(:, 2) = eff_filt(w_array.level2(:, 4).',

w_array.level2(:, 3).'...

192 % , filtbank_bin_dec.H0 , filtbank_bin_dec.H1 ,

filtbank_bin_syn.H0 , filtbank_bin_syn.H1).';

193 % end
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194 end

195 disp('Analysis Filter End')

196
197 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

198 %% Filter/Interpolate Outputs:

199
200 disp('Synthesis Filter Start ')

201 % Rebuild signals: start from the outside in...

202 for index = log2(num_bands_max):-1:1

203 for index2 = 1: index

204 % Output Analysis Processing

205 eval(sprintf('temp_LP = [interp_zeros(synthesis_data.level%d(:,

(2*index2 -1)), 2, 1); 0];', index));

206 eval(sprintf('temp_HP = [interp_zeros(synthesis_data.level%d(:,

2* index2), 2, 1); 0];', index));

207 eval(sprintf('synthesis_data.level%d(:, index2) =

synthesis_data.level%d(:, index2) + filter(filtbank_bin_dec.

H0, 1, temp_LP) + filter(filtbank_bin_dec.H1 , 1, temp_HP);'

...

208 , index -1, index -1));

209 clear temp_HP temp_LP

210 % Ideal Output Analysis Processing

211 eval(sprintf('temp_DLP = [interp_zeros(ideal_synthesis_data.

level%d(:, (2*index2 -1)), 2, 1); 0];', index));

212 eval(sprintf('temp_DHP = [interp_zeros(ideal_synthesis_data.

level%d(:, 2* index2), 2, 1); 0];', index));

213 eval(sprintf('ideal_synthesis_data.level%d(:, index2) =

ideal_synthesis_data.level%d(:, index2) + filter(

filtbank_bin_dec.H0 , 1, temp_DLP) + filter(filtbank_bin_dec.

H1, 1, temp_DHP);'...

214 , index -1, index -1));

215 clear temp_DHP temp_DLP

216 end

217 end

218 disp('Synthesis Filter End')

219
220 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

221 %% Specify Outputs:

222
223 fin_dec_vals = dec_factors;

224 output.out = synthesis_data;

225 output.ideal = ideal_synthesis_data;

226 output.PSD_INest = PSD_array_in;

227 output.PSD_OUTest = PSD_array_out;

228 output_error.full = ideal_synthesis_data.level0 (1: length(

ideal_synthesis_data.level0)) - synthesis_data.level0;
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229 output_error.subbands = LMS_error;

230
231 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

232 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.16 Adjustable Non-Uniform Subband Update Algo-
rithm

1 function [dec_factors_new , w_new] = subband_update(dec_factors_old ,

w_old , PSD_array_in , PSD_array_out , thresh_vals , max_bands , H0, H1)

2
3 %

4 % Adam Charles

5 % 3/24/2009

6 %

7 % Decision algorithm for updating subband decimation factors

8 %

9
10 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 %%

12 w_new = w_old;

13 % dec_factors_new = 0;

14
15 % PSD_in0 = find(PSD_array_in == 0);

16 % PSD_array_in(PSD_in0) = 10^( -5);

17 PSDratio = (PSD_array_out + 0.0001) ./( PSD_array_in + 0.001);

18
19 % index_low = find(PSDratio < thresh_vals (1));

20 % index_high = find(PSDratio > thresh_vals (2));

21 % power_weights = zeros(length(dec_factors_old), 1);

22 % power_weights(index_low) = -2;

23 % power_weights(index_high) = 1;

24
25 branch_test = 0;

26 df_new_index = 1;

27
28 for index = 1: length(dec_factors_old)

29 index_start = max_bands*sum (1./ dec_factors_old (1:index -1)) + 1;

30 band_power(index) = mean(PSDratio(index_start:index_start -1+

max_bands /( dec_factors_old(index))));

31 if branch_test == 0 && index 6= length(dec_factors_old)

32 band_test = ceil(dec_factors_old(index)*sum (1./ dec_factors_old
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(1: index))/2) - ceil(dec_factors_old(index +1)*sum (1./

dec_factors_old (1: index +1))/2); % dec_factors_old(index +1)*

33 if dec_factors_old(index) == dec_factors_old(index +1) &&

band_test == 0

34 branch_test = 1;

35 else% if dec_factors_old(index) 6= dec_factors_old(index +1) ||

branch_test 6= 0

36 if band_power(index) < thresh_vals (1) && dec_factors_old(

index) < max_bands

37 % Decompose into 2 bands

38 dec_factors_new(df_new_index:df_new_index +1) = 2*[1 ,1]*

dec_factors_old(index);

39 df_new_index = df_new_index +2;

40 else

41 dec_factors_new(df_new_index) = dec_factors_old(index);

42 df_new_index = df_new_index +1;

43 end

44 end

45 elseif branch_test == 0 && index == length(dec_factors_old)

46 if band_power(index) < thresh_vals (1) && dec_factors_old(index)

< max_bands

47 % Decompose into 2 bands

48 dec_factors_new(df_new_index:df_new_index +1) = 2*[1 ,1]*

dec_factors_old(index);

49 df_new_index = df_new_index +2;

50 else

51 dec_factors_new(df_new_index) = dec_factors_old(index);

52 df_new_index = df_new_index +1;

53 end

54 elseif branch_test == 1

55 if (0.5*( band_power(index) + band_power(index -1))> thresh_vals

(2)) && (dec_factors_old(index) > 2)

56 % Consolodate Branch

57 % index

58 % dec_factors_old

59 dec_factors_new(df_new_index) = 0.5* dec_factors_old(index);

60 band_num = dec_factors_old(index)*sum (1./ dec_factors_old (1:

index));

61 eval(sprintf('w_new.level%d(:, 0.5*( band_num)) = eff_filt(

w_old.level%d(:, band_num -1).'', w_old.level%d(:,

band_num).'', H0 , H1, H0, H1).'';'...

62 , log2(dec_factors_old(index)) -1, log2(dec_factors_old(

index)), log2(dec_factors_old(index)) ))

63 df_new_index = df_new_index + 1;

64 elseif (band_power(index -1)< thresh_vals (1))&&( band_power(index

)< thresh_vals (1))&&( dec_factors_old(index -1) < max_bands)

65 % decompose both

66 dec_factors_new(df_new_index:df_new_index +1) = 2*[1 ,1]*

dec_factors_old(index -1);

67 dec_factors_new(df_new_index +2: df_new_index +3) = 2*[1 ,1]*
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dec_factors_old(index);

68 df_new_index = df_new_index +4;

69 elseif (band_power(index -1)< thresh_vals (1))&&( dec_factors_old(

index -1) < max_bands)

70 % decompose index -1

71 dec_factors_new(df_new_index:df_new_index +1) = 2*[1 ,1]*

dec_factors_old(index -1);

72 dec_factors_new(df_new_index +2) = dec_factors_old(index);

73 df_new_index = df_new_index +3;

74 elseif (band_power(index)< thresh_vals (1))&&( dec_factors_old(

index) < max_bands)

75 % decompose index

76 dec_factors_new(df_new_index) = dec_factors_old(index -1);

77 dec_factors_new(df_new_index +1: df_new_index +2) = 2*[1 ,1]*

dec_factors_old(index);

78 df_new_index = df_new_index +3;

79 else

80 % leave it alone ...

81 dec_factors_new(df_new_index) = dec_factors_old(index -1);

82 dec_factors_new(df_new_index +1) = dec_factors_old(index);

83 df_new_index = df_new_index +2;

84 end

85 branch_test = 0;

86 end

87
88
89
90 end

A.17 Test Filter Construction Code

1 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %% Low -Pass Filter

3 ftest_lpspec.fp= 1/4; % pass -band frequency as

calculated above

4 ftest_lpspec.fst= 1/4 + 1/32; % stop -band frequency is 20Hz

above pass -band

5 ftest_lpspec.Ap= 0.1; % worst pass -band attenuation is

1db

6 ftest_lpspec.Ast= 60; % best stop -band attenuation is

20db

7 % generate actual filter from specs

8 ftest_lpspecs= fdesign.lowpass('fp,fst ,Ap,Ast', ...

9 ftest_lpspec.fp , ftest_lpspec.fst , ftest_lpspec.Ap, ftest_lpspec.

Ast);

10 ftest_lp= design(ftest_lpspecs ,'kaiserwin ');

11
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12
13 % fvtool(ftest_lp)

14
15 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 %% Band -Pass Filter

17 ftest_bpspec.fst1 = 1/3;

18 ftest_bpspec.fp1 = 1/3 + 1/27;

19 ftest_bpspec.fp2 = 1/3 + 1/17 + 1/4;

20 ftest_bpspec.fst2 = 1/3 + 1/17 + 1/2 + 1/27;

21 ftest_bpspec.ast1 = 60;

22 ftest_bpspec.ap = 0.1;

23 ftest_bpspec.ast2 = 70;

24 ftest_bpspecs= fdesign.bandpass('fst1 ,fp1 ,fp2 ,fst2 ,ast1 ,ap,ast2' ,...

25 ftest_bpspec.fst1 , ftest_bpspec.fp1 , ftest_bpspec.fp2 , ftest_bpspec

.fst2 ,...

26 ftest_bpspec.ast1 , ftest_bpspec.ap , ftest_bpspec.ast2);

27 ftest_bp= design(ftest_bpspecs ,'kaiserwin ');

28
29
30 % fvtool(ftest_bp)

31
32 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

33 %% High -Pass Filter

34 ftest_hpspec.fst= 25/32; % pass -band frequency as

calculated above

35 ftest_hpspec.fp= 13/16; % stop -band frequency is 20Hz above

pass -band

36 ftest_hpspec.Ast= 60; % worst pass -band attenuation is

1db

37 ftest_hpspec.Ap= 0.1; % best stop -band attenuation is

20db

38 % generate actual filter from specs

39 ftest_hpspecs= fdesign.highpass('fst ,fp ,ast ,ap', ...

40 ftest_hpspec.fst , ftest_hpspec.fp , ftest_hpspec.Ast , ftest_hpspec.

Ap);

41 ftest_hp= design(ftest_hpspecs ,'kaiserwin ');

42
43 % fvtool(ftest_hp)

44
45 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

46 %% Band -Stop Filter

47
48 ftest_bsspec.fp1 = 1/3;

49 ftest_bsspec.fst1 = 1/3 + 1/27;
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50 ftest_bsspec.fst2 = 1/3 + 1/17 + 1/4;

51 ftest_bsspec.fp2 = 1/3 + 1/17 + 1/2 + 1/27;

52 ftest_bsspec.ap1 = 0.1;

53 ftest_bsspec.ast = 60;

54 ftest_bsspec.ap2 = 0.2;

55 ftest_bsspecs= fdesign.bandstop('fp1 ,fst1 ,fst2 ,fp2 ,ap1 ,ast ,ap2' ,...

56 ftest_bsspec.fp1 , ftest_bsspec.fst1 , ftest_bsspec.fst2 ,

ftest_bsspec.fp2 ,...

57 ftest_bsspec.ap1 , ftest_bsspec.ast , ftest_bsspec.ap2);

58 ftest_bs= design(ftest_bsspecs ,'kaiserwin ');

59
60 % fvtool(ftest_bs)

61
62 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.18 Subband Algorithm Testing Code

1 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 %% Subband Adaptive Filtering Testing Code

3 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 clear

5 clc

6 close all

7 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %% Choose which filters to try

9 lms_uniform_opt = 0;

10 lms_reg_opt = 0;

11 rls_uniform_opt = 0;

12 rls_reg_opt = 0;

13 lms_nonuniform_opt = 1;

14
15 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 %% Make testing data

17 n_max = 32000;

18 % H = poly(rand(60, 1));

19 % H = H./norm(H);

20
21 % Test Filters

22 filt_test_create
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23
24 Hlp = ftest_lp.Numerator;

25 Hhp = ftest_hp.Numerator;

26 Hbp = ftest_bp.Numerator;

27 Hbs = ftest_bs.Numerator;

28 % fvtool(ftest_lp)

29 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

30 %% Make Options

31
32 step_size = 0.01;

33 num_bands = 16;

34 num_weights = ceil(length(Hbs)/num_bands)*num_bands;

35 num_trials = 1;

36 band_type = 'uniform ';

37 w_start = zeros(num_bands , num_weights/num_bands);

38 w_start_LMS = zeros(1, num_weights);

39 forget_factor = 0.99;

40 ∆ = 0.9;

41 thresh_vals = [0.1, 0.5]/4; %10^(12/20) *10.^( -[50;15]/20);

42 for index2 = 1:log2(num_bands)

43 eval(sprintf('output_error_NULMS.subbands.level%d = 0;', index2))

44 end

45 output_error_LMS.full = 0;

46 output_error_LMS.subbands = 0;

47 output_error_NULMS.full = 0;

48 LMS_error = 0;

49
50 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

51 %% Run tests

52
53 for index = 1: num_trials

54 disp(sprintf('Iteration %d', index))

55 u_in = 0.6* randn(n_max , 1);

56 [sys_noise] = AFinput_noise(length(u_in), [0, 0.01] , 5000, [1, 30],

[1,0]);

57 d_ideal = [ filter(Hbp , 1, u_in (1: n_max /2)); filter(Hlp , 1, u_in(

n_max /2+1: end))] + sys_noise;

58 % d_ideal = filter(Hbs , 1, u_in) + sys_noise;

59
60 if lms_uniform_opt

61 [output_LMS , output_error_LMS_temp] = subbandLMSsimple2(u_in ,

d_ideal ,step_size , w_start , num_bands , band_type);

62 output_error_LMS.full = output_error_LMS.full + abs(

output_error_LMS_temp.full)/num_trials;

63 output_error_LMS.subbands = output_error_LMS.subbands + abs(

output_error_LMS_temp.subbands)/num_trials;
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64 end

65 if lms_reg_opt

66 [d_hat_LMS , LMS_error_temp , w_mat] = standardLMS(u_in , d_ideal ,

w_start_LMS , step_size , 7, 0);

67 LMS_error = LMS_error + abs(LMS_error_temp)/num_trials;

68 clear LMS_error_temp

69 end

70 if rls_uniform_opt

71 [output , output_error] = subbandRLSsimple2(u_in , d_ideal ,

forget_factor , ∆, w_start , num_bands);

72 output_error.full = output_error.full + abs(output_error.full)/

num_trials;

73 for index2 = 1:log2(num_bands)

74 eval(sprintf('output_error.subbands.level%d = output_error.

subbands.level%d + abs(output_error.subbands.level%d)/

num_trials;'...

75 , index2 , index2 , index2))

76 end

77 end

78 if rls_reg_opt

79 [d_hat_RLS , Xi , w] = standardRLS(u_in , d_ideal , w_start_LMS ,

forget_factor , ∆, 8, 0);

80 end

81 if lms_nonuniform_opt

82 w0_len = num_weights;

83 num_bands_max = num_bands;

84 start_dec_factrs = [2 2];

85 PSD_mem = 50;

86 [output_NULMS , output_error_NULMS_temp , fin_dec_vals] =

subbandNULMS_adapt(u_in , d_ideal ,step_size ,...

87 w0_len , num_bands_max , start_dec_factrs , PSD_mem , thresh_vals);

88 output_error_NULMS.full = output_error_NULMS.full + abs(

output_error_NULMS_temp.full)/num_trials;

89 for index2 = 1:log2(num_bands)

90 eval(sprintf('output_error_NULMS.subbands.level%d =

output_error_NULMS.subbands.level%d + abs(

output_error_NULMS_temp.subbands.level%d)/num_trials;'...

91 , index2 , index2 , index2))

92 end

93 clear output_error_NULMS_temp

94 end

95
96 end

97 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

98 %% Plotting

99
100 if rls_uniform_opt && rls_reg_opt

101 figure;
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102 subplot (3,1,1), plot (1: size(output_error.subbands , 2), abs(Xi(1:

size(output_error.subbands , 2))))

103 xlabel('Iteration Number , n', 'FontSize ', 12, 'FontName ', 'Times ');

104 ylabel('RLS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ');

105 subplot (3,1,2), plot (1: length(output_error.full), abs(output_error.

full.'), 'b', 1: length(Xi), abs(Xi), '--r')

106 xlabel('Iteration Number , n', 'FontSize ', 12, 'FontName ', 'Times ');

107 ylabel('RLS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ');

108 legend('Subband RLS', 'Fullband RLS')

109 subplot (3,1,3), plot(abs(output_error.subbands.'))

110 xlabel('Iteration Number , n', 'FontSize ', 12, 'FontName ', 'Times ');

111 ylabel('RLS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ');

112 legend('Subband 1', 'Subband 2', 'Subband 3', 'Subband 4', 'Subband

5', 'Subband 6', 'Subband 7', 'Subband 8');

113 end

114
115 if lms_uniform_opt && lms_reg_opt

116 figure;

117 subplot (3,1,1), plot (1: length(output_error_LMS.full), abs(

output_error_LMS.full.'), 'b', 1: length(LMS_error), abs(

LMS_error), '--r')

118 xlabel('Iteration Number , n', 'FontSize ', 12, 'FontName ', 'Times ');

119 ylabel('LMS Absolute Value , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ');

120 legend('Subband LMS', 'Fullband LMS')

121 subplot (3,1,2), plot (1: size(output_error_LMS.subbands , 2), abs(

LMS_error (1: size(output_error_LMS.subbands , 2))))

122 xlabel('Iteration Number , n', 'FontSize ', 12, 'FontName ', 'Times ');

123 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ');

124 subplot (3,1,3), plot(abs(output_error_LMS.subbands.'))

125 xlabel('Iteration Number , n', 'FontSize ', 12, 'FontName ', 'Times ');

126 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ');

127 legend('Subband 1', 'Subband 2', 'Subband 3', 'Subband 4', 'Subband

5', 'Subband 6', 'Subband 7', 'Subband 8');

128 end

129
130 if lms_nonuniform_opt

131 figure;

132 subplot (4,1,1), plot((abs(output_error_NULMS.full)))

133 subplot (4,1,2), plot((abs(output_error_NULMS.subbands.level1)))

134 subplot (4,1,3), plot((abs(output_error_NULMS.subbands.level2)))

135 subplot (4,1,4), plot(abs(output_error_NULMS.subbands.level3))

136 end

137
138 if lms_nonuniform_opt %&& lms_reg_opt
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139 figure; hold on

140 plot((abs(output_error_NULMS.full)))

141 plot((abs(output_error_NULMS2.full)), '--r')

142 xlabel('Iteration Number n', 'FontSize ', 12, 'FontName ', 'Times ')

143 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ')

144 legend('Sub -optimal Decomposition ', 'Optimal Decomposition ')

145 hold off

146
147 figure; hold on

148 subplot(4, 1, 1), plot((abs(output_error_NULMS.full)))

149 xlabel('Iteration Number n', 'FontSize ', 12, 'FontName ', 'Times ')

150 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ')

151 subplot(4, 1, 2), plot((abs(output_error_NULMS.subbands.level1)))

152 xlabel('Half Rate Iteration Number n', 'FontSize ', 12, 'FontName ',

'Times ')

153 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ','

Times ')

154 subplot(4, 1, 3), plot((abs(output_error_NULMS.subbands.level2)))

155 xlabel('Quarter Rate Iteration Number n', 'FontSize ', 12, 'FontName

', 'Times ')

156 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ','

Times ')

157 subplot(4, 1, 4), plot (20* log10(abs(output_error_NULMS.subbands.

level2)))

158 xlabel('Eigth Rate Iteration Number n', 'FontSize ', 12, 'FontName ',

'Times ')

159 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ','

Times ')

160
161 figure; hold on

162 plot (20* log10(abs(output_error_NULMS.full))) %plot(output_NULMS.out

.level0)%

163 plot (20* log10(abs(output_error_NULMS2.full)), '--r')

164 xlabel('Iteration Number n', 'FontSize ', 12, 'FontName ', 'Times ')

165 ylabel('LMS Absolute Error , |e[n]|', 'FontSize ', 12, 'FontName ', '

Times ')

166 legend('Sub -optimal Decomposition ', 'Optimal Decomposition ')

167 hold off

168 end

169
170
171 figure;

172 xPSDvals = num_bands_max *(1: size(output_NULMS.PSD_OUTest , 2));

173 yPSDvals = pi*((1: size(output_NULMS.PSD_OUTest , 1)) -1)/num_bands_max;

174 surf(xPSDvals , yPSDvals , (output_NULMS.PSD_OUTest +0.001) ./( output_NULMS

.PSD_INest + 0.01))

175 xlabel('Iteration Number n', 'FontSize ', 12, 'FontName ', 'Times ')

176 ylabel('Frequency Band', 'FontSize ', 12, 'FontName ', 'Times')
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177 zlabel('PSD Ratio Estimate ', 'FontSize ', 12, 'FontName ', 'Times ')
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