
RWL1-DF: Re-Weighted Dynamic Filtering for Time-Varying

Signals

Adam S. Charles

August 21, 2012

Contents

1 Overview 2

2 Filtering Algorithms Included 2
2.1 Basis Pursuit De-noising Dynamic Filtering (BPDN-DF) 2
2.2 Re-Weighted `1 Dynamic Filtering (RWL1-DF) . 3

3 Code Included 4
3.1 Function Descriptions . 4
3.2 Package Dependencies . 5

1

1 Overview

This code package is an implementation of the basis pursuit de-noising dynamic filtering (BPDN-
DF) described in [1] and the rw-weighted `1 dynamic filtering (RWL1-DF) algorithm described
in [2]. The goal of these two algorithms is to causally estimate a time-varying sparse signal when
an approximate model of the dynamics is known. The methodology assumes that the signal evolves
as

xn = fn(xn−1) + νn

where xn ∈ RN is the evolving state, fn(·) is the dynamics function and ν ∈ RN is the innovations
term, which represents the unpredictable portion of the dynamics. In this framework we assume
that we obtain a number of measurements at each time-step

yn = Gnxn + εn (1)

where yn ∈ RM is the measurement vector at each time step,Gn ∈ RM×N is the linear measurement
operator and εn ∈ RM is the observation noise. We wish to recover the function xn at each time-
step, a problem commonly referred to as the filtering process. At each time step, we do not receive
enough measurements to reconstruct the signal directly (M � N). Therefore knowledge of the
dynamics has to be taken into account at each iteration. This code package contains two such
algorithms as well as methods to compare to algorithms which do not take dynamic information
into account (for comparison).

In particular the code package includes small-scale and large scale MATLAB implementations
for both BPDN-DF and RWL1-DF. It also includes scripts and supporting functions to test the
algorithms on a small-scale toy problem and a large-scale video recovery test. The included functions
are outlined in Section 3.

2 Filtering Algorithms Included

2.1 Basis Pursuit De-noising Dynamic Filtering (BPDN-DF)

In basis pursuit de-noising (BPDN), a sparse signal is recovered via a convex optimization func-
tion [3, 4]. Specifically if xn is sparse in some generative dictionary (often taken to be a wavelet
basis) W (i.e. an is a sparse vector and xn = Wan). BPDN can be used at each iteration to solve
for the state given the measurements yn as

ân = arg min
a
‖yn −GnWa‖22 + γ‖a‖1

where γ trades off between sparsity and data fidelity, and the state is recovered by x̂n = Wân. This
optimization function, however, ignores inter-frame correlations. One method to induce correlations
which is included in this package, is the BPDN dynamic filtering (BPDN-DF) [1]. In BPDN-DF
we add another term to the optimization to include out knowledge of the dynamic process into the
estimation process:

ân = arg min
a
‖yn −GnWa‖22 + γ‖a‖1 + κ‖a− aest‖qq

2

where κ is a second trade-off parameter which balances the prediction error to the sparsity and
measurement fidelity terms and q is our choice of regularization norm. The choice in q depends
on the statistics expected from the error in our assumed dynamic process (the innovations term).
Gaussian innovations should result in q = 2 while sparse innovations should be included as q ≤ 1.

2.2 Re-Weighted `1 Dynamic Filtering (RWL1-DF)

Recent expansions of the traditional BPDN framework has resulted in algorithms with improved
performance in under-sampled signal recovery. In particular, the re-weighted `1 (RWL1) algorithm
has provided improved recovery at the cost of solving a number of BPDN problems [5–8]. In
the RWL1 algorithm, each element of the sparse decomposition an[i] is given its own weighting
parameter λn[i]. The weights are adjusted at each algorithmic step to further encourage coefficients
that appear to be active while further discouraging coefficients which have little evidence. The
algorithm iterates through

âtn = arg min
a
‖yn −GnWa‖22 + λ0

∑
λt
n[i]|a[i]|

λ̂t+1
n [i] =

τ

|âtn[i]|+ η

where λ0, τ and η are algorithmic constants that arise from the probabilistic model and t counts
the algorithmic iterations (see [8] for more details). Again, this algorithm does not account for
inter-frame correlations, so a dynamic filtering version of the RWL1 algorithm (RWL1-DF) was
devised to address this issue [2]. In the RWL1-DF algorithm, the updates for the weights include
a prediction for the weights

W T fn (Wân−1)

as

âtn = arg min
a
‖yn −GnWa‖22 + λ0

∑
λt
n[i]|a[i]|

λ̂t+1
n [i] =

τ

β|âtn[i]|+ |W T fn (Wân−1) |+ η

where λ0, τ β and η are again algorithmic constants that arise from the probabilistic model and
t counts the algorithmic iterations. This algorithms tends to be more robust to model mismatch
than BPDN-DF, as some of the scripts included in this package show. More details and the full
probabilistic model can be found in [2].

3

3 Code Included

3.1 Function Descriptions

Table 1: Test Scripts Included
Script Name Description

RWL1 DF test.m Script to simulate and recover a simple,
small time varying signal.

RWL1 DF testimage.m Script to import, compressively measure,
and recover the foreman video sequence.

Table 2: Small Scale Function Implementations
Function Name Description

BPDN multi.m Function to run BPDN on a series of signals

BPDN DF L2L1.m Function to run BPDN-DF for sparse signals and Gaussian innovations

BPDN DF L1.m Function to run BPDN-DF for Gaussian signals and Sparse innovations

BPDN DF L1L1.m Function to run BPDN-DF for sparse signals and innovations

RWL1 DF.m Function to run the RWL1-DF algorithm

Basic KF.m Function to run the Kalman Filter

Table 3: Large Scale Function Implementations
Function Name Description

BPDN video.m Function to run BPDN on video sized data (implicit functions)

BPDN DF video.m Function to run L1L2 BPDN-DF on video sized data

RWL1 video.m Function to run RWL1 on video sized data

RWL1 DF largescale.m Function to run RWL1-DF on large data sets (implicit functions)

The main scripts (RWL1 DF test.m and RWL1 DF imagetest.m) give examples on how to run the
included functions for small scale and large scale problems. In particular, RWL1 DF test.m generates
a random sequence of sparse vectors (which evolve according to a sequence of random permutations)
and have an innovations with a preset mean sparsity. The sequence is recovered from compressed
measurements (Gaussian random measurements) using standard Kalman Filtering, BPDN, BPDN-
DF (three ways), RWL1 and RWL1-DF. In RWL1 DF imagetest.m, the foreman video sequence is
loaded and recovered from random subsamples of its noiselet transform (randomly sampled on
a frame-by-frame basis). The video sequence is recovered using BPDN, BPDN-DF (with an `2
dynamics constraint), RWL1 and RWL1-DF. The functions used in RWL1 DF imagetest.m all take
implicit functions in the form of a cell array for both the dynamics functions (in this case taken
to be identity) and the measurement functions (sub-sampled noiselet transforms in this case). For
more assistance on each function (e.g. inputs/outputs), please refer to the help files included.

4

Table 4: Supporting Functions
Function Name Description

noise model.m Simulates a sparse state noise model with random deviations
from some true dynamics

RandPermMat.m Generates a random permutation matrix

rand posn.m Generates random Poisson variable

rand sparse seq.m Generates a random sparse permutation sequence with
sparse deviations

opt L1 dyn1.m Custom function for minFunc to calculate BPDN-DF esti-
mates with sparse states and innovations

3.2 Package Dependencies

Table 5: Code Dependencies
Package Location Dependencies

L1 Homotopy

[9]
http://users.ece.gatech.edu/~sasif/homotopy/index.html BPDN multi.m,

BPDN DF L2L1.m,
BPDN DF L1.m,
RWL1 DF.m

TFOCS [10] http://tfocs.stanford.edu/download/ BPDN video.m,
BPDN DF video.m,
RWL1 video.m,
RWL1 DF Video.m

minFunc http://www.di.ens.fr/~mschmidt/Software/minFunc.html BPDN DF L1L1.m

CS-Mag

Code [11]
http://users.ece.gatech.edu/~justin/spmag/ RWL1 DF testimage.m

(optional)

WaveLab http://www-stat.stanford.edu/~wavelab/ RWL1 DF testimage.m

(optional)

DT-DWT [12] http://eeweb.poly.edu/iselesni/WaveletSoftware/ RWL1 DF testimage.m

(optional)

There are a number of other packages which the code in this package depends on. In particular,
two `1 optimization solvers are required (one for small scale problems and one for larger scale
problems), a generalized optimization routine, and two packages are needed to efficiently calculate
different transforms. While most of these packages are optional (e.g. the wavelet packages can
easily be swapped for other wavelet transforms) they are all necessary to run the main scripts
included. See Table 5 for a full list of packages, where to obtain them, which functions require
them and any possible related publications.

5

http://users.ece.gatech.edu/~sasif/homotopy/index.html
http://tfocs.stanford.edu/download/
http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://users.ece.gatech.edu/~justin/spmag/
http://www-stat.stanford.edu/~wavelab/
http://eeweb.poly.edu/iselesni/WaveletSoftware/

References

[1] A. Charles, M. Asif, J. Romberg, and C. Rozell, “Sparsity penalties in dynamical system
estimation,” in Information Sciences and Systems (CISS), 2011 45th Annual Conference on.
IEEE, pp. 1–6.

[2] A. Charles and C. Rozell, “Re-weighted `1 dynamic filtering for time-varying sparse signal
estimation,” 2012, submitted.

[3] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing Magazine, vol. 24, no. 4, pp.
118–121, Jul 2007.

[4] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information,” IEEE Trans on Information Theory,
vol. 52, no. 2, Feb 2006.

[5] E. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted `1 minimization,”
Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 877–905, Dec 2008, special
Issue on Sparsity.

[6] D. Wipf and S. Nagarajan, “Iterative reweighted `1 and `2 methods for finding sparse so-
lutions,” Selected Topics in Signal Processing, IEEE Journal of, vol. 4, no. 2, pp. 317–329,
2010.

[7] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for compressive sensing,” in
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference
on. IEEE, 2008, pp. 3869–3872.

[8] P. Garrigues and B. Olshausen, “Group sparse coding with a laplacian scale mixture prior,”
Advances in Neural Information Processing Systems, pp. 1–9, 2010.

[9] M. Salman Asif and J. Romberg, “Dynamic updating for minimization,” IEEE Journal of
Selected Topics in Signal Processing, vol. 4, no. 2, pp. 421–434, 2010.

[10] S. Becker, E. Candès, and M. Grant, “Templates for convex cone problems with applications
to sparse signal recovery,” Mathematical Programming Computation, pp. 1–54, 2011.

[11] J. Romberg, “Imaging via compressive sampling,” IEEE Signal Processing Magazine, vol. 25,
no. 2, pp. 14–20, 2008.

[12] I. Selesnick, “The double-density dual-tree dwt,” Signal Processing, IEEE Transactions on,
vol. 52, no. 5, pp. 1304–1314, 2004.

6

	Overview
	Filtering Algorithms Included
	Basis Pursuit De-noising Dynamic Filtering (BPDN-DF)
	Re-Weighted 1 Dynamic Filtering (RWL1-DF)

	Code Included
	Function Descriptions
	Package Dependencies

