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The Kalman Filtering process seeks to discover an underlying set of state variables {xk} for k ∈ [0, n]
given a set of measurements {yk}. The process and measurement equations are both linear and given by

xn+1 = Fn+1xn + νo,n+1 (1)

yn = Φnxn + νd,n. (2)

The Kalman filter wants to find, at each iteration, the most likely cause of the measurement yn given
the approximation made by a flawed estimation (the linear dynamics Fn. Figure 1 shows a 2-dimensional
graphical depiction. What is important here is not only that we have the measurement and the prediction,
but knowledge of how each is flawed. In the Kalman case, this knowledge is given by the covariance matrices
(essentially fully describing the distribution of the measurement and prediction for the Gaussian case). In
Figure 1, this knowledge is represented by the ovals surrounding each point. The power of the Kalman
filter comes from it’s ability not only to perform this estimation once (a simple Bayesian task), but to use
both estimates and knowledge of their distributions to find a distribution for the updated estimate, thus
iteratively calculating the best solution for state at each iteration.

While many derivations of the Kalman filter are available, utilizing the orthogonality principle or finding
iterative updates to the Best Linear Unbiased Estimator (BLUE), I will derive the Kalman Filter here using
a Bayesian approach, where ’best’ is interpreted in the Maximum A-Posteriori (MAP) sense instead of an
L2 sense (which for Gaussian innovations and measurement noise is the same estimate). Bayesian analysis
uses Bayes rule, p(a|b)p(b) = p(b|a)p(a), to express the posterior probability in terms of the likelihood and
the prior. In this case we want to optimize over all states xk:

{x̂k}k∈[0,n] = arg max

[(
n∏

i=1

p(xi|xi−1)p(yi|xi)

)
p(y0|x0)p(x0)

]
(3)

= arg max

[
p(yn|xn)p(xn|xn−1)

(
n−1∏
i=1

p(xi|xi−1)p(yi|xi)

)
p(y0|x0)p(x0)

]
(4)

In order to find a globally optimal solution at the nth time-step only, a marginalization is performed by:

x̂n = arg max
xn

[∫
Rn

p(yn|xn)p(xn|xn−1)

(
n−1∏
i=1

p(xi|xi−1)p(yi|xi)

)
p(y0|x0)p(x0)d{xl}l∈[0,n−1]

]
(5)

= arg max
xn

[
p(yn|xn)

∫
Rn

p(xn|xn−1)

(
n−1∏
i=1

p(xi|xi−1)p(yi|xi)

)
p(y0|x0)p(x0)d{xl}l∈[0,n−1]

]
(6)

Note that this integral is essentially the prior on xn. Since this prior is an integral of all Gaussian
random variables, the result is a Gaussian random variable (Gaussian distributions are self conjugate, and
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Figure 1: The Kalman filter uses the prediction of a current state based on a previous estimate (blue points)
in conjunction with a current measurement (red point) to estimate the true current state (green point).
The error in the dynamics (shown here by the blue ovals which represent the covariance)is a combination
of the error in the past state and the error in the model of the system. This error in conjunction with the
measurement error (the red ovals) allow the covariance of the state update (green oval) to be calculated,
propogating forward the confidence of each update.

marginalizing over a Gaussian yields a Gaussian). Thus while only performing a temporally localized update,
an updated distribution on xn is used so that Equation (4) can be written as

x̂n = arg max
xn

[
p(yn|xn)px̂n−1

(xn)
]

(7)

The updated distribution uses all past information to give in essence a likelihood xn|{yk}k∈[0,n−1]. This
estimate comes in the form of a probability distribution on the previous estimate x̂n−1, and takes the place
of the prior on xn.

The Kalman equations can then be derived by using a MAP estimate. Let the prior on the prediction,
p(xn|n−1), be determined by Equation (1). In the case of the regular Kalman Filter (a linear process), this
is the sum of two multivariate Gaussian distributions. Since the Gaussian is α-stable, this sum is itself a
multivariate Gaussian distribution, and can thus be described completely by finding the mean and covariance
matrix. The prior on x̂n takes the form N (Fnx̂n−1,FnPn−1F

H
n +Qn). Here Pn−1 is the correlation matrix

of the previous estimate. The MAP estimate is then calculated as:

arg max
x̂n

p(x̂n,yn) = arg max
x̂n

p(yn|x̂n)p(x̂n) (8)

= arg max
x̂n

e−(yn−Φnx̂n)
HR−1

n (yn−Φnx̂n)e−(x̂n−Fnx̂n−1)
H(FH

n Pn−1Fn+Qn)
−1(x̂n−Fnx̂n−1) (9)

= arg min
x̂n

(yn −Φnx̂n)HR−1n (yn −Φnx̂n) + (x̂n − Fnx̂n−1)H(FnPn−1F
H
n +Qn)−1(x̂n − Fnx̂n−1) (10)

This minimum value can be found analytically by setting the derivative equal to zero:

0 =
∂

∂x̂n

(
(yn −Φnx̂n)HR−1(yn −Φnx̂n) + (x̂n − Fnx̂n−1)H(FnPn−1F

H
n +Qn)−1(x̂n − Fnx̂n−1)

)
(11)
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=
∂

∂x̂n
(x̂H

n (ΦH
n R

−1
n Φn + (FnPn−1F

H
n +Qn)−1)x̂n − x̂H

n (ΦH
n R

−1
n yn + (FnPn−1F

H
n )−1Fnx̂n−1) (12)

−(yH
n R

−1
n Φn + x̂H

n−1F
H
n (FnPn−1F

H
n +Qn)−1)x̂n)

= 2(ΦH
n R

−1
n Φn + (FnPn−1F

H
n +Qn)−1)x̂n − 2(ΦH

n R
−1
n yn + (FnPn−1F

H
n +Qn)−1Fnx̂n−1) (13)

Let

x̂n|n−1 = Fnx̂n−1 (14)

Pn|n−1 = FnPn−1F
H
n +Qn (15)

be the projected mean and covariance matrix, respectively:

x̂n =
[
ΦH

n R
−1
n Φn + P−1n|n−1

]−1 [
ΦH

n R
−1
n yn + P−1n|n−1x̂n|n−1

]
(16)

=
[
Pn|n−1 − Pn|n−1(Rn + ΦnPn|n−1Φ

H
n )−1ΦnPn|n−1

] [
ΦH

n R
−1
n yn + P−1n|n−1x̂nn|n−1

]
(17)

= x̂n|n−1 −KnΦnx̂n|n−1

+
[
Pn|n−1Φ

H
n R

−1
n − Pn|n−1Φ

−1
n (Rn + ΦnPn|n−1Φ

H
n )−1ΦnPn|n−1Φ

H
n R

−1
n

]
yn (18)

= x̂n|n−1 −KnΦnx̂n|n−1 +Kn

[
(ΦnPn|n−1Φ

H
n +Rn)R−1n −ΦPn|n−1Φ

H
n R

−1
n

]
yn (19)

= x̂n|n−1 −KnΦnx̂n|n−1 +Knyn (20)

= x̂n|n−1 +Kn(yn −Φnx̂n|n−1) (21)

Where

Kn := Pn|n−1Φ
H
n

[
Rn + ΦnPn|n−1Φ

H
n

]−1
(22)

is the definition of the Kalman gain at time n. This is the exact solution that the Kalman Filter should give as
a best estimate of the current state. To continue propagating the estimate to future iterations, the covariance
matrix Pn needs to be calculated as well. Pn can then be calculated by simply finding E[x̂n+1x̂

H
n+1] using

the expression derived for the estimate.

E[x̂nx̂
H
n ] = E[(x̂n|n−1 +Knyn −KnΦnx̂n|n−1)(x̂n|n−1 +Knyn −KnΦnx̂n|n−1)H ] (23)

= (I −KnΦn)Pn|n−1(I −KnΦn)H +KnRnK
H
n (24)

= Pn|n−1 −KnΦnPn|n−1 − Pn|n−1Φ
HKH

n +Kn(ΦnPn|n−1Φ
H
n +Rn)KH

n (25)

= Pn|n−1 −KnΦnPn|n−1 − Pn|n−1Φ
H
nK

H
n

+Pn|n−1Φ
H
n

[
Rn + ΦnPn|nn

ΦH
n

]−1
(ΦnPn|n−1Φ

H
n +Rn)KH

n (26)

= Pn|n−1 −KnΦnPn|n−1 − Pn|n−1Φ
H
nK

H
n + Pn|nn

ΦH
nK

H
n (27)

= Pn|n−1 −KnΦPn|n−1 (28)

The Equations compromising the efficient Kalman Filter update are then Equations (14), (15), (22), (21),
and (28).
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