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1 Introduction

Sparse coding is a concept that is currently obtaining the state of the art results in many fields,
including image processing and theoretical neuroscience [3, 5]. The underlying concept of sparse
coding is that a high dimensional data can be represented by very few coefficients in some dictionary.
Thus although a vector x may exist in Rn, it may lie on a manifold of dimension m � n. x can
thus be written as

x = Da + ε (1)

where D is the dictionary (each column is an element of the dictionary), a is the sparse set of
coefficients which generate x, and ε is a white Gaussian noise term indicating imperfections in the
generative model.

Two main questions arise in the sparse coding framework with respect to Equation (1):

1. Given a data point x and a dictionary D, how can I recover the coefficients a?

2. Given a set of data points {xk}k∈[1,K], can I learn both the coefficients that generated then
as well as the dictionary D in which the decompositions are sparse?

The answer to the first of these questions is well studies in the field of Compressed Sensing, with
many readily available packages available [2,4]. The answer to the second question, however, comes
in two distinct flavors, each stemming from a slightly different interpretation of Equation (1). In
one interpretation, the Compressed Sensing approach is taken and the answer comes in the form
of the K-SVD algorithm [1]. In a different interpretation, Equation (1) is viewed as a probabilistic
model, where a MAP estimation is used to determine a. In this case, a highly kurtotic prior is
placed on a, and the dictionary can be learned in a statistical manner, by sampling from a large
number of data samples [6]. This document is for the dictionary learning library version 1.0, which
performs dictionary learning over a dataset using the statistical unsupervised method in [6].
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2 Functionality

2.1 Theory of Dictionary Learning

The statistical method of learning dictionaries for sparse coding is based on maximizing the proba-
bility distribution over x, or equivalently minimizing an energy function. In this method, Equation
(1) is used to write a likelihood probability distribution on x,

p(x|a,D) = Ze
− ‖x−Da‖22

2σ2
ε (2)

where σε is the variance of the noise term ε, and Z is the normalizing constant for the distribution.
Now a prior is placed on the coefficients a. The prior distribution is necessarily highly kurtotic,
and while [6] uses a Cauchy distribution the most used currently is the Laplacian distribution.
This distribution is chosen because of it’s relationship to the `1 norm used in compressed sensing
coefficient recovery. The posterior distribution is then

p(a|x,D) ∝ p(x|a,D)p(a|D) (3)

∝ e−
‖x−Da‖22

2σ2
ε e−

√
2

σa
‖a‖1 (4)

where σ2
a is the variance of the Laplacian distribution on the coefficients. In Equations (3) and

(4), the constant scaling factors are dropped since they do not effect the arg max of the posterior
distribution. The conditional in the prior distribution is purely to maintain the concept that this
calculation is valid given a dictionary, since technically the prior is independent of D. Solving the
MAP inference problem yields the coefficients a, given a dictionary D:

â = arg max
a

(p(a|x,D) (5)

= arg max
a

(
e
− ‖x−Da‖22

2σ2
ε e−

√
2

σa
‖a‖1

)
(6)

= arg min
a

(
‖x−Da‖22 + λ‖a‖1

)
(7)

where λ = 2
√

2σ2
ε /σa. Minimizing the cost function in Equation (7) (the negative log of the

posterior) with respect to a is the optimization given D, and is a well studied convex optimization
problem. In dictionary learning, however, the same energy function needs to be minimized with
respect to D as well.

Finding D can be viewed as either a maximum likelihood (ML) estimate or another MAP
estimate. In the ML version, the optimization is

arg min
D

p(x|D) = arg min
D

∫
Rp
p(x|a,D)p(a)da (8)

Which required sampling from the posterior. In [6], Olshausen and Field show that the distribution
is tight about the maximum peak â, thus the integral can be estimated by finding the maximum
and the optimization becomes:
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∫
Rp
p(x|a,D)da ≈ 〈p(x|D, â)〉 (9)

To minimize this likelihood, a gradient descent algorihtm can be used with steps on the ith dictio-
nary element (columns of D) given by

∆Di ∝ 〈â(x−Dâ)〉 (10)

where 〈〉 denotes an average over some sample set of the data.
In order to minimize the likelihood, the following algorithm was set up:

1. Initialize D to some random dictionary

2. pick a random subsample of the data

3. Find a given D for each x chosen

4. Take a gradient step on D given by Equation (10)

5. Repeat steps 2 - 4 until convergence

The other method to optimize a dictionary places a prior over the elements of D as well as a,
resulting in the expended posterior

p(a,D|x) = p(x|a,D)p(a|D)p(D) (11)

= e
− ‖x−Da‖22

2σ2
ε e−

√
2

σa
‖a‖1e

− ‖D‖F
2σ2
D (12)

In this case the elements of D are i.i.d. Gaussian random variables with zero mean and variance
σ2
D. The MAP inference is then a joint inference problem given by

{D̂, â} = arg min
{D,a}

(
‖x−Da‖22 + λ‖a‖1 + λ2‖D‖F

)
(13)

where λ2 = σ2
ε /σ

2
D. The learning procedure (in performing an alternating minimization as before)

is essentially the same, but with an extra term to the gradient descent step:

∆Di ∝ 〈â(x−Dâ)− 2λ2Di〉 (14)

2.2 Code Functionality

The code in the dictionary learning library includes code to learn a dictionar, D, for data in the
form of vectors, image patches, or data cubes (e.g. videos) sing either a likelihood or MAP estimate
on D. The code is set to be able to use a preset conjugate gradient descent algorithm to infer the
coefficients, but any inference algorithm can be used, with the appropriate wrapper (see Section
2.2.2). Some wrappers are included for some popular inference methods, such as l1 ls [4]. For
general help with a specific function, type help then the function name for comments on its use.

3



Table 1: Functions included in the Dctionary Learning Library
Function Name Description
dictionary learn script Example script for setting up dictionary learning on natural images
learn dictionary Main function to learn a dictionary, using parfor parallelization
learn dictionary spmd Main function to learn a dictionary, using spmd parallelization
initialize dictionary Function to initialize a dictionary
gen multi infer Function to infer coe?cients for a data sampling in parallel
dictionary update Function to update a dictionary using either a ML or MAP method
cg l2l1 wrapper Wrapper for cg l2l1 (included)
l1ls wrapper Wrapper for l1 ls (http://www.stanford.edu/ boyd/l1 ls/)
l1ls nneg wrapper Wrapper for l1 ls with non-negativity constraints (in l1 ls package)
SolveMP wrapper Wrapper for Matching Pursuit (MP) (http://sparselab.stanford.edu)
SolveOOMP wrapper Wrapper for Optimized Orthogonal MP (http://sparselab.stanford.edu)
perform omp wrapper Wrapper for regular OMP

(http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html)
greed omp qr wrapper Wrapper for QR-OMP

(http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html)
cg l2l1 Function to infer sparse coe?cients using conjugate gradient descent
mintotal Function used in cg l2l1 for the optimization
basis2image2 Function to reshape a 2D dictionary into a viewable format for plotting
dict plot1d Function to plot a vector type dictionary

2.2.1 Included Functions

The included functions are shown in Table 1. The main functions are learn dictionary and
learn dictionary spmd. These functions are equivalent in terms of the input/output characteris-
tics, with the diffeerence being the change in the parallelization scheme.

In learn dictionary, the interior loop where the coefficients of each selected data point is in-
ferred is parallelized using a parfor loop. In learn dictionary spmd, the parallelization is accom-
plished by using single program multiple data (spmd) parallelization. The main difference is that
parfor apportions the data to the workers as it is selected, while spmd separates the whole data set at
the start of the program, and sends only commands to the workers. Different parallelization schemes
will be more e?cient based on the computer type, data dimensionality and dictionary size. The script
dictionary learn script is an example of starting a MATLAB worker pool, loading data, initializing
a dictionary and learning the dictionary for a set of natural images. The file IMAGES.mat ref-
erenced can be found on Dr. Olshausens website: http://redwood.berkeley.edu/bruno/sparsenet/.
The full list of options supported by the included code is:

� opts.data type - Type of data (‘vector, ‘square or ‘cube)

� opts.grad type - Type of cost function for gradient descent: ‘norm or ‘forb.

� opts.sparse type - Type of inference to use. For full set of options, see multi infer.m

� opts.n elem - Number of dictionary elements
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� opts.in iter - Number of samples per iteration

� opts.iters - Number of iterations to run the algorithm for

� opts.GD iters - Number of gradient descent steps per iteration

� opts.verb - 1 if verbose outputs are desired

� opts.bl size - Block size for ‘square or ‘cube data types

� opts.dep size - Depth size for ‘cube data type

� opts.nneg dict - Choose nonegative values only for the dictionary

� opts.step size - Initial step size for gradient descent

� opts.decay - Rate of decay for gradient descent step size

� opts.lambda - Lambda value for l1-regulated inference schemes

� opts.lambda2 - Second lambda value for ‘forb energy function

� opts.tol - Tolerance for inference schemes

� opts.ssim flag - Choose weather to normalize the data pre-inference

� opts.std min - Minimum standard deviation (use with .ssim flag)

� opts.save every - Number of iterations to save after

� opts.save name - Filename to save the dictionary in

� opts.bshow - 0 to not plot intermediary dictionaries. Else plot every opts.bshow iterations.

� opts.disp size - Dimensions of ?gure to display the dictionary

Most of these options have default values and do not need to be set. The bare minimum for running
the dictionary learning function is the type of data, the number of dictionary elements, the block
size (‘square or ‘cube data) and depth (‘cube data). This dictionary learning package is set up to
allow for any inference scheme to be used to find the sparse coefficients at each iteration. All that
needs to be used is an appropriate wrapper. A number of wrappers for useful inference schemes
have been provided, with the functions available at the corresponding websites in Table 1. For
more specific details on the other functions, simply use the help command in MATLAB.

2.2.2 Writing Your Own Wrapper

While wrappers are included for some readily available inference functions, any function can be
used as long as a wrapper is written for it and passed to the main function. To write a wrapper,
simply use the same inputs/outputs as the existing wrappers and any extra parameters needed
can be passed through using the opts struct. The inputs to the wrapper must be of the form
(dictionary n, x im, opts), and the output must be a single output: coef vals. The wrapper
simply extracts the necessary options from opts and organizes the inputs into the inference function.
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