A Causal Locally Competitive Algorithm for the Sparse Decomposition of Audio Signals

Adam Charles, Abbie Kressner & Christopher Rozell Georgia Institute of Technology

2011 Digital Signal Processing Workshop

Audio Coding Matching Pursuit Filter and Threshold LCA

イロト イポト イヨト イヨト

Audio Coding

- Standard coding: Fourier/Wavelet
- Modern processing uses sparsity
- Sparse audio decompositions:

• Make *s*^{*m*} sparse!

Audio Coding Matching Pursuit Filter and Threshold LCA

イロン イボン イヨン イヨン

3

Motivation

- Potential applications for sparse inference
 - Audio coding
 - Audio enhancement
 - Hearing aids and cochlear implants
- How can we find s_i^m ?

Audio Coding Matching Pursuit Filter and Threshold LCA

Matching Pursuit

Vector-Matrix form

 $x = \Phi a$

- Algorithm
 - Pick best *a_i* at time

п

- Calculate the residual
- Repeat

(Mallat and Zhang 1993)

イロト イヨト イヨト イ

3

э

Introduction

Causal LCA Results & Conclusions Audio Coding Matching Pursuit Filter and Threshold LCA

Filter and Threshold

Smith and Lewicki, 2005)

Audio Coding Matching Pursuit Filter and Threshold LCA

LCA Structure

Use feedback to sparsify outputs while retaining signal integrity:

(Rozell et. al. 2008)

メロト メポト メヨト メヨト

Audio Coding Matching Pursuit Filter and Threshold LCA

LCA Dynamics

2) $a_i(t) = T_\lambda(u_i(t))$

・ロト ・聞ト ・ヨト ・ヨト

E 990

Audio Coding Matching Pursuit Filter and Threshold LCA

frametitleCorrelations

Figure: Basis Correlation Functions for ϕ_3 , ϕ_4 and ϕ_6

(日) (四) (三) (三) (三) (三) (○)

Dynamics

Buffer

Figure: Track correlations through space & time

Dynamics

Causal LCA Architecture

Figure: Recently written coefficients continue inhibiting

(日)

Dynamics

CLCA Dynamics

- Read new sample and move sliding window
- Allow LCA to converge at time n,

$$2a)\dot{u}_{i}(t) = \frac{1}{\tau} \left(\langle \boldsymbol{x}, \boldsymbol{\phi}_{i} \rangle - u_{i}(t) - z_{i}(t) \right)$$
already active
where
$$z_{i}(t) = \sum_{k} \langle \boldsymbol{\phi}_{i}, \boldsymbol{\phi}_{k} \rangle \hat{a}_{k} + \sum_{j \neq i} \langle \boldsymbol{\phi}_{i}, \boldsymbol{\phi}_{j} \rangle a_{j}(t)$$
2b)
$$a_{i}(t) = T_{\lambda} \left(u_{i}(t) \right)$$

Write last coefficients in the buffer and move all other values back a timestep

Spikegrams: Speech Signal Rate Distortion Curve Conclusions

Spikegrams

Spikegrams: Speech Signal Rate Distortion Curve Conclusions

Rate Distortion Curve

◆□> ◆□> ◆豆> ◆豆> ・豆 ・のへぐ

Spikegrams: Speech Signal Rate Distortion Curve Conclusions

イロト イポト イヨト イヨト

æ

Conclusions

- Sparsity with causality
- Analog system: low power and real-time (50KHz)
- 10ms window: within lip sync tolerance

Spikegrams: Speech Signal Rate Distortion Curve Conclusions

Thank you

Q&A

email: acharles6@gatech.edu

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● の々で

Spikegrams: Speech Signal Rate Distortion Curve Conclusions

æ

Spikegrams

