Stochastic Filtering via Reweighted- ℓ_1 Adam Charles and Christopher J. Rozell Georgia Institute of Technology

Introduction

Sparsity Models have proven indispensable in estimating single signals in measurement poor applications [1]. However, many applications require recovery of correlated sparse signals (e.g. [2]):

• Recover: a set of signals $oldsymbol{x}_k \in \mathbb{R}^N$ where $k \in K \subset \mathbb{Z}^D$ • Given: measurements $y_k \in \mathbb{R}^M$, (M < N):

$$oldsymbol{y}_k = oldsymbol{\Phi}_k oldsymbol{x}_k + oldsymbol{\epsilon}_k$$

 Φ_k : measurement matrix ϵ_k : noise

Sparsity Model:
•
$$x_k = \Psi a_k, a_k$$
 is mostly zeros
• $p(a_k)$ is highly kurtotic (e.g. Laplacian)
• Recover each a_k independently
E.g. MAP estimate with Laplacian priors:
 $\hat{a}_k = \arg \min_a || y_k - \Phi \Psi a ||_2^2 + \gamma || a ||_1$
 $\hat{x}_k = \Psi \hat{a}_k$
Correlation Model:
• x_k depends probabilistically on $x_{l/k}$
 $p(x_k) = h(x_{l \neq k})$
• Ideally, h is local (only needs $l : || l - k ||_q < r$)
• MAP recovery requires joint or conditional
distributions over K
We propose a hierarchical model to robustly
recover correlated sparse signals
Reweighted- l_1 Framework
We propose stochastic filtering using second order
moments native to sparse signal estimation. Based
on reweighted-11 optimization [3], using weights
to propagate information, e.g. [4].
Reweighted-11 optimization can be viewed as a second order
model for sparse signals.
• Gaussian Measurements:
 $p(y_k | a_k) \sim \mathcal{N}(\Phi \Psi a_k, \sigma_e^2 I)$
• Laplacian Conditional:
 $p(a_k[i]|\lambda_k[i]) = \frac{\Delta \lambda_k[i]}{\theta_k^k[T(\alpha)}}e^{-\lambda_k[i']a_k[i]}$
• Gamma Hyperprior on Variance:
 $p(\lambda_k[i]) = \frac{\Delta \lambda_k[i]}{\theta_k^k[T(\alpha)}e^{-\lambda_k[i']a_k[i]}$
• Marginal Prior
 $p(a_k[i]) = \frac{\Delta \lambda_k[i]}{\theta_k^k[T(\alpha)}e^{-\lambda_k[i']a_k[i]} + 1)^{\alpha+1}}$
• Variance parameters can be correlated via θ_k :
 $\theta_k = \xi (g(a_{i \in K}) + \eta)$
• Expectation Maximization approach to optimization
Algorithm: iterate until convergence
M-step:
 $\hat{a}_k^t - \arg \min_a [||y_k - \Phi \Psi a||_2^2 + 2\sigma_e^2 \lambda_0 \sum \lambda_k^{t-1}[i]|a[i]|]$
E-step:
 $\lambda_k^k[i] = \frac{2\tau}{\beta |\hat{a}_k^k[i]| + |g(\hat{a}_{i \subset K})[i]| + \eta}$
Propagating information in the second order moments
allows for more robustness to model mismatch

RWL1-SF: HSI Spectral SR

Task: super-resolution (SR) of multispectral imagery to hyperspectral imagery: inpainting+deblurring

