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Introduction
    Sparsity Models have proven indispensable in estimating 
single signals in measurement poor applications [1].
    However, many applications require recovery of  correlated
sparse signals (e.g. [2]):    
        Recover: a set of signals                  where
        Given: measurements               ,                :
     

               : measurement matrix            : noise

Reweighted-     Framework

Special Cases: RWL1-DF and RWL1-SF

Finite Length Inputs

Conclusions

RWL1-SF: HSI Spectral SR

The Foreman video sequence recovered from randomly 
selected noiselet measurements (M = 0.25N) [7]. 

Comparisons shown to BPDN, BPDN-DF [6], RWL1 [3], 
DCS-AMP [8], and modCS [9]. .

We propose a hierarchical model to robustly
recover correlated sparse signals

    Second order models allow for joint recovery of 
correlated, sparse signals.
        Improved estimation quality (RMSE)    
        Robustness to innovations' statistics
        Computational complexity no more than a number 
        of BPDN solutions
        
Future directions:
        Understand theoretical limits of the algorithm 
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RWL1-DF: Compressive Video Recovery
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Expectation maximization 
ensures convergence to a 
local optima

We propose stochastic filtering using second order 
moments native to sparse signal estimation. Based 

on reweighted-l1 optimization [3], using weights 
to  propagate information, e.g. [4].

Reweighted-l1 Dynamic Filtering (RWL1-DF):  
     Temporally located/correlated signals
     Example application: Compressive video recovery
     Temporal model:
     Time Dependent Variance:

     Exploit correlation for causal filtering (e.g. [5])

Algorithm: E-step becomes

Empirically RWL1-DF 
converges faster than RWL1.

Sparsity( )
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    Reweighted-l1 optimization can be viewed as a second order
    model for sparse signals.
        Gaussian Measurements:
        
        Laplacian Conditional:

        Gamma Hyperprior on Variance:

        
        Marginal Prior

        Variance parameters can be correlated via      : 

        Expectation Maximization approach to optimization

Reweighted-l1 Spatial Filtering (RWL1-SF):  
     Spatially located/correlated signals
     Example application: Hyperspectral imagery (HSI)
     Spatial correlations defined by a kernel 
     Spatially Dependent Variance:

     Exploit correlation for spatial filtering

Algorithm: E-step becomes

RWL1-DF recovers natural movies (segments of a BBC documentary) more 
accurately than competing algorithms Comparisons shown to DCS-AMP [8], 

modCS [9], RWL1 [3], BPDN-DF [4].
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Foreman Video Recovery:

BBC "Natural" Video Recovery: Convergence Notes:

    Task: super-resolution (SR) of multispectral imagery 
to hyperspectral imagery: inpainting+deblurring
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Propagating information in the second order moments
 allows for more robustness to model mismatch

    Sparsity Model:
                          ,     is mostly zeros   
                   is highly kurtotic (e.g. Laplacian) 
         Recover each       independently
     E.g. MAP estimate with Laplacian priors:

    Correlation Model:
              depends probabilistically on 

   
         Ideally,    is local (only needs                          )
         MAP recovery requires joint or conditional 
         distributions over 

Algorithm: iterate until convergence

M-step:

E-step:


