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Abstract— Compressed sensing is an important application in
signal and image processing which requires solving non-linear
optimization problems. A Hopfield-Network-like analog system is
proposed as a solution, using the Locally Competitive Algorithm
(LCA) to solve an overcomplete ℓ1 sparse approximation prob-
lem. A scalable system architecture using sub-threshold currents
is described, including vector matrix multipliers (VMMs) and a
nonlinear thresholder. A 4x6 nonlinear system is implemented on
the RASP 2.9v chip, a Field Programmable Analog Array with
directly programmable floating gate elements, allowing highly
accurate VMMs. The circuit successfully reproduced the outputs
of a digital optimization program, converging to within 4.8%
RMS, and an objective value only 1.3% higher on average. The
active circuit consumed 29µA of current at 2.4 V, and converges
on solutions in 240µs. A smaller 2x3 system is also implemented.
Extrapolating the scaling trends to a N=1000 node system, the
Analog LCA compares favorably with State-of-the-Art digital
solutions, using a small fraction of the power to arrive at solutions
ten times faster. Finally we provide simulations of large scale
systems to show the behavior of the system scaled to non-trivial
problem sizes.

I. INTRODUCTION

SPARSE approximation is an optimization program that
seeks to represent a vector (i.e., signal) by using just a few

elements of a prescribed dictionary (Fig. 1(a)). Modern signal
processing has seen increasing movement toward using tools
based on nonlinear optimizations rather than linear filtering
because these approaches correspond to inference in statis-
tically rich (i.e., non-Gaussian) signal models. In particular,
sparse approximation is a fundamental component in state-of-
the-art approaches for many application areas, including in-
verse problems (e.g., denoising, restoration, and data recovery
from undersampled measurements [3]), computer vision and
machine learning [4].

To highlight one specific example, consider the emerging
literature on Compressed Sensing (CS) [5], [6]. In brief, the
CS results give performance guarantees for inverse problems
when the signals are highly undersampled (M ≪ N where
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Fig. 1. (a) The LCA implemented on the FPAA is capable of performing the
same sparse encodings as a digital solver, but at a fraction of the power and
speed. (b) Sparse encodings assume a linear generative model, where a signal
is the sum of a sparse set of dictionary elements. For example, [7] showed
that natural images can be constructed with a sparse set of wavelets.

M measurements are taken of a length N signal) and the
signal is assumed to be sparse (having only S ≪ N non-
zeros). The main CS results essentially show that for certain
sensing matrices Φ (generally taken to be random), S-sparse
signals can be recovered (up to the noise level) by solving an
ℓ1 regularized least-squares optimization problem as long as
M ∼ O (S log(N/S)). These results mean that in situations
where measurements are costly, a signal can be undersampled
during acquisition in exchange for using more computational
resources to recover the signal at a later time.

This insight is leading to the design of new coded aperture
sensing systems that spend fewer resources to collect data
at a specified resolution, relying instead on computational
post-processing to reconstruct the signal. Unfortunately, the
optimization problems used for signal recovery are computa-
tionally expensive, preventing practical deployment of digital



solutions for portable, low-power applications. This paper
demonstrates a system implementation for solving a widely
used sparse approximation problem via sub-threshold current
mode circuits on a Field Programmable Analog Array (FPAA).

A. Impact of an Analog Implementation

Despite the long history of optimization in the field of
signal processing (see Mattingley & Boyd [8] for a detailed
discussion), the recent advent of applications that utilize
optimization directly to perform CS highlights a specific need
for solvers that can operate in real time or under power
constraints. For example, CS techniques have been proposed
for both medical imaging [9] and channel estimation for
wireless communications [10], that may respectively benefit
from real-time or low-power systems for sparse approximation.

Given the importance of solving sparse approximation
problems in state-of-the-art algorithms, recent research has
focused on dramatically reducing their solution times. These
optimization programs are particularly challenging due to the
presence of the ℓ1-norm in the objective, making the program
non-smooth. Despite much recent progress in developing both
general and special purpose convex optimization solvers, this
non-smoothness provides particular challenges for obtaining
real-time results for moderate-sized problems.

Recent work in computational neuroscience has demon-
strated a continuous-time dynamical system where the steady-
state response is the solution to a regularized least-squares
optimization and the architecture of the system is designed to
efficiently deal with sparsity-inducing non-smoothness condi-
tions [11]. The Hopfield Neural-Network-like architecture of
this system makes it amenable to analog circuit implementa-
tion, which promises several benefits.

In particular, even the most efficient current iterative digital
algorithms require O(N2) floating point operations per itera-
tion while the solution time in a parallel analog architecture is
proportional to the RC time constant (which scales O(N))
[12]. Total energy consumption is also reduced by using
analog vector matrix multipliers VMMs) that require only one
transistor per multiplication, instead of the large multipliers
required for digital processing. Using a programmable analog
device like the FPAA allows the implementation and testing
of circuits without the time-consuming process of industrial
fabrication [13], and allows compensation for errors caused
by the inherent mismatch in transistor sizes.

In total, a successful analog approach may provide solutions
with lower power, greater speed, and better scaling properties
than is possible in digital solutions. The implementation of
such a system significantly impacts many practical applica-
tions that will simply be out of reach even with substantial
future improvements in digital algorithms due to either time
or power constraints. An analog system could be especially
powerful when coupled with the CS techniques mentioned
above, allowing signals to be acquired (with coded apertures)
and recovered at very fast time scales, potentially eliminating
the post-processing that has become the accepted bottleneck
with CS systems.

B. Optimization Problem Formulation

Sparse approximation methods achieve efficient signal rep-
resentations using only a small subset of dictionary elements
by taking advantage of the known statistical structure of the
signal [14]. These methods assume a linear generative model
(Fig. 1(b)) for signal representation:

y = Φa+ � (1)

where a vector input y ∈ ℝM is represented with an
overcomplete dictionary Φ = [�1, . . . , �N ] using coefficients
a ∈ ℝN , with additive Gaussian white noise �. We wish to
find the Maximum A-Posteriori (MAP) estimate of the linear
generative model, assuming a sparse prior on coefficients a:

arg maxa P (a∣y) = arg maxa P (y∣a)P (a) ,
P (a) ∝

∏
j e
−C(aj) (2)

where C(⋅) is a sparsity-inducing cost function (e.g., the ℓ0-
Norm). Unfortunately, direct optimization of this problem -
where C(⋅) counts non-zeros - is intractable. In Basis Pursuit
De-Noising (BPDN) [15], one of the most common surrogates
of ℓ0-Norm optimization, C(⋅) is set to the ℓ1-Norm, making
(2) equivalent to the convex optimization:

arg min
a

(
1

2
∥y − Φa∥22 + � ∥a∥1

)
. (3)

The first term in the objective function represents the mean
squared error of the approximation, the second term represents
the sparsity of the solution via the ℓ1-Norm, ∥a∥1 =

∑
i ∣ai∣,

and � is a tradeoff parameter balancing data fidelity with the
solution sparsity.

II. DESCRIPTION OF THE LCA ARCHITECTURE

The LCA is described by a system of nonlinear ordinary dif-
ferential equations (ODEs). These equations translate readily
into a Hopfield-Network-like system architecture.

A. System of Differential Equations

The LCA is a continuous time algorithm which acts on
a set of internal state variables, um(t) for m = 1, . . . ,M .
These internal states are guaranteed to exponentially converge
to the equilibrium state, which is the solution to the objective
function (3) [11], [12]. Restricting a(t) > 0, the dynamics of
the nodes are described by the following set of ODEs:

� u̇(t) + u(t) = b− (ΦtΦ− I) a(t),
a(t) = T�(u(t)) = max (0, u(t)− �)

. (4)

In (4), � is the time constant of the system, and b ∈ ℝM = Φty
is the vector of driving inputs. The feedback between the nodes
is computed by H = ΦtΦ− I . The sparsity constraint and the
nonlinearity are introduced by the threshold operator T�(⋅),
which decreases the absolute value of u(t) by �. Once the state
variables u(t) have reached equilibrium, the output vector a(t)
is the solution to the objective function.
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Fig. 2. (a) Diagram of the small LCA system, with ammeters indicating the
currents represented in plots (b)-(d). Inputs are produced by an onchip current
DAC, while outputs are converted to voltages which are then projected offchip.
(b) The output of the feedforward VMMs, when the two inputs are swept
along the unit curve, as cos(�) ⋅ 50 nA and sin(�) ⋅ 50 nA. Compared against
an ideal multipliers. (c) Output of the LCA without any recurrent inhibition,
compared with the ideal. (d) Output of the full LCA system, compared to a
digital solver. The difference here is caused by a slight error in the recurrent
VMM, magnified when two nodes have strong lateral inhibition. Note that
the competition sharpens the response curves.

B. System Architecture for Hardware

As in most neural networks, the internal state variables in
(4) evolve in a parallel fashion. The architecture of the LCA
implemented as an Analog Hardware System is presented in
Fig. 2(a). The system is composed of current mode VMMs
and current mirrors (including a double current mirror that
implements the soft-threshold operation).

The first VMM is the feedforward multiplier. It accepts the
input vector y from the Current DACS (after they are mirrored)
and performs the operation b = Φty to compute the driving
inputs. The second block, the recurrent VMM, performs the
operation ℎ(t) = Ha(t) and computes the recurrent feedback.
The feedback is similar to a stable, convergent Hopfield
Network [18]; nodes do no inhibit themselves (Hm,m = 0) and

Iin1

Iout1 IoutM

Q0 Q1,1 Q1,M

IinN

Q0 QN,1 QN,M

Vref

Vref

Fig. 3. Implementation of a VMM using floating-gate transistors [16].
Each input is log-compressed to produce a voltage, which is broadcast to
the transistors in the row. Each transistor than generates a current, which is
a scalar multiple of the original: w(n,m) = e−(Q(n,m)−Q0)/UT , where
Q is the charge programmed into a floating gate, and Q0 is the charge
programmed on all the input floating gates. The performance of this structure
on the RASP 2.9v was characterized in [17].

the inhibition between nodes are symmetric (Hm,n = Hn,m).
Both of these VMMs are implemented as current mode

devices (Fig. 3), which have a small area, low power, and
an easily scalable design while operating in the sub-threshold
region [16]. The VMMs perform the linear operation IOUT =
WIIN . The charge on each FGE determines the weight of
each scalar multiplication.

Scalar multiplication accuracy requires the input and output
devices to have matching drain voltages. The input drain
voltage is regulated with an OTA that provides a power source
to both the input and output currents; the OTA must therefore
scale in power with the number and strength of the outputs.

The last system component is a double nFET current mirror
(Fig. 4), which finds the difference of the linear terms b−(ℎ+
�), and applies a capacitive load to induce a low pass filter
with time constant. The active current mirrors, based on [19],
each accept a current into an nFET. The circuit forces another
nFET to have the same gate, and source voltages, thus assuring
that it will produce the same current. Since the input nFET
also acts a rectifying diode, the current mirror can only pass
positive currents. Introducing the negative offset � makes the
device an effective soft-thresholder (Fig. 4(b)).

Accuracy of the current mirror requires the nFETs to be
well matched, and to have identical drain voltages. Mismatch
is minimized simply by enlarging the devices; this enlargement
is not a major impediment to system density, since there are
O(N) mirrors, while the VMM area scales O(N2). As with
the VMMs, OTAs are used to regulate the input drain voltage.
Since the mirror outputs are the VMM inputs (which also
have a regulated voltage), this allows matching of both drain
voltages. The current mirror OTAs likewise allow matching of
the drain voltages in the VMM.

The transfer function of the double current mirror is then:
� u̇(t) + u(t) = b− ℎ(t)
a(t) = T�(u(t))

. (5)

From the VMMs, we get b = ΦT y and ℎ = (ΦTΦ − I)a(t).
Combining these relationships yields our original ODE (4).
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Fig. 4. Analog Thresholder (a) Implementation of the Soft-Threshold with a
single sided output. The floating gate generates the threshold current Itℎ
, while current mirrors invert and rectify their inputs. The full operation
performed is thus Iout = max

(
0, I+ − (I− + I�)

)
. Additional output

branches of the current mirrors allow the current to be read. A large loading
capacitor CL adds a large, dominating time constant. The OTAs eliminate
drain voltage mismatch by pinning the input voltages to Vref . Vref = 1.2V,
Vdd = 2.4V. (b) Response of the Soft-Thresholder. With Itℎ = 0, the
thresholding function is a rectifier, but when Itℎ is increased to 10 nA, it
effectively creates a soft threshold at Itℎ.

III. IMPLEMENTING THE LCA CIRCUIT ON
RECONFIGURABLE ANALOG HARDWARE

The experimental results presented in this paper were ob-
tained on the Reconfigurable Analog Signal Processor (RASP)
2.9v (Fig. 5), a 350 nm double-poly CMOS chip designed
in our lab [17]. The chip includes several Computational
Analog Blocks (CABs), a large matrix of programmable
floating gate elements (FGEs) that can be used for routing,
and 26 chip spanning volatile switch lines that allow rapid
scanning of every internal node in the chip. Most of the CABs
contain a variety of analog elements, including the operational
transconductance amplifiers (OTAs) and nFETs used in the
LCA. There are also 18 CABs dedicated for current-mode
Digital to Analog Conversion (DACs), which allow system
inputs to be quickly reprogrammed.

The RASP 2.9v includes several design innovations that
make it particularly well suited for implementing and testing
the LCA. The majority of the FGEs are directly programmed
devices, meaning that the programmed device is directly in the
final circuit. While this adds a selection register to the signal
path, it eliminates mismatch issues seen in earlier FPAAs [20].
The direct devices allow the programming of current sources
(needed for the threshold current and inputs) to 7 bits of
accuracy (less than 1% error).

An automated calibration routine from [20] uses the Enz-
Krummenacher-Vittoz (EKV) [21] model to find the exact
relationship between the floating gate programming targets
and the multiplier weight. On the RASP 2.9v, it allows the
programming of current-mode VMMs to 6 bits of accuracy.

We controlled and communicated with the RASP 2.9v using
a USB connection to a AT91sam7s Microcontroller. The
microcontroller also communicates with onboard ADCs and
DACs, which allowed us to set and read analog voltages on the
FPAA. We interfaced with the Microcontroller with a suite of
Mathworks MATLAB c⃝ commands. See [22] for greater detail
on the Hardware and Software infrastructure. Scripts written

Fig. 5. A die photo of the RASP 2.9v, an FPAA chip on which the hardware
implementation of the LCA was programmed. The RASP 2.9v is 5mm x
5mm and fabricated in 350 nm process

in MATLAB c⃝ also allow the programming and testing to be
automated. Our lab has developed a whole chain of tools for
the RASP chips, allowing the user to convert an entire library
of functions into circuits [23], and then to place and route
these circuits on the RASP 2.9v [24].

We implemented multiple LCA systems on a FPAA, the
RASP 2.9v [17]. The smaller of these was a single-ended
2x3 system (two inputs, three outputs), built for illustrative
purposes; since the input vector had to lie on the unit circle,
the input in practice had only one degree of freedom, making
the results easier to display. Its dictionary was:

Φ =

[
1 .6 0
0 .8 1

]
.

We also implemented a larger single-ended 4x6 system in
order to demonstrate the scalability of the system architecture:

Φ =

⎡⎢⎢⎣
1 0 0 0 .47 .59
0 1 0 0 .59 .47
0 0 1 0 .65 .1
0 0 0 1 .1 .65

⎤⎥⎥⎦ .
The six dictionary elements were chosen to fully span the

input domain and to observe the Restricted Isometry Property
(RIP), where the eigenvalues of the matrix are restricted to a
certain range. While a matrix of random Gaussian variables
is typically used to satisfy the RIP [5], the dimensions were
small enough here that a set matrix could do so more easily.

In addition to the necessary VMMs and current mirrors,
onchip 8-bit current DACs were programmed to allow control
of the input currents. These inputs were normalized to a ratio
of 60 nA:1. The threshold current I� was programmed to 6nA,
for a tradeoff parameter of � = 0.1.

Each soft threshold node was implemented with multiple
output transistors. One of these was used to drive the rest of
the circuit. A second device was used as a system output. The
output currents were scanned out by a volatile switch lines,
and then sent to either to an onchip current-to-voltage (I2V)
converter (Fig. 8(b)) for rapid measurement, or a picoammeter
(used for debugging the circuit and calibrating the I2V).

IV. RESULTS OF THE FULLY IMPLEMENTED SYSTEM

Using the dynamical switches, we were able to quickly test
individual components and the system as a whole. We used
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solvers. Even at the point where the analog and digital solutions diverge by
almost 10% of the signal output, the analog objective value is less than 1%
higher than the digital.

the onchip current DACs to inject currents with a constant
ℓ2-Norm into the circuit. For the 2x3 network, we swept the
input on the unit circle, while we randomly generated 100
inputs for the 4x6 network. For both systems, we separately
measured the input currents, the outputs of the feedforward
VMMs (with and without thresholding), the outputs of the
recurrent VMMs, and the system outputs. Fig. 2 illustrates the
progression of these results for the smaller network.

A. Accuracy of Results

In order to test the accuracy of the analog LCA, we also ran
the inputs through l1-ls [25], a digital sparse approximation
algorithm. For both the 2x3 and 4x6 systems, the solution
produced by the hardware network was very similar to that
produced by the digital solver. For the smaller network (Fig.
6), the root-mean-square (RMS) difference of the analog and
digital solutions was at maximum 5.1 nA, and averaged less
than 1 nA, or less than 2% of the magnitude of the input. The
larger network showed higher divergence, with a max RMS
difference of 9.2 nA, or 15.3%, and an average RMS 2.9 nA,
or 4.8%.

Despite some deviation from the digital solution, the large
network converged on a moderately optimized sparse code.
The final value of the objective function averaged only 1.3%
higher for the 4x6 network than for the l1-ls solution, and in
the worst case was only 3.2% higher. Most of the increase in
the objective function in the analog solution came from the
MSE term, which averaged 4.6% higher than in the digital
case. The average ℓ1-Norm was virtually identical for both
analog and digital solutions.

The support vector of the analog system (the list of active
nodes) was identical to that of the digital solution in 63 of 100
trials, and never differed by more than one node. Matching

the support set is an important achievement, since the optimal
sparse approximation solution can be fully recovered if the
correct support set is identified.

B. Analysis of Sources of Error

To diagnose the sources of the discrepancies between the
analog and digital solutions, each point in the circuit was
compared against a digital ideal. We individually tested each
scalar multiplication in the VMMs by serially inputing the
vectors of the identity matrix into each VMM. This was easily
accomplished for the feedforward VMM, since its inputs are
directly controlled by the current. We measured B = ΦTY ,
setting Y = I .

In order to verify the scalar weights in the recurrent VMM,
we had to force the output to be a vector of the identity matrix.
We measured Z = HA, setting Y = Φ which gives A =
I(1− �).

We compared the achieved multiplications with the target
weights for both matrices, and found that the RMS error of
multiplication was 1.9% of the target. This corresponds to a
precision of 5.7 bits, which matches previous recordings on
the same chip [17]. This error can be reduced by using a
programming algorithm with finer precision, at the cost of
longer programming times.

We then analyzed the network in order to calculate the
expected effect of the multiplication errors on the final output.
In steady state u̇(t) = 0, and for active nodes a > 0 (active
coefficients are in the active set Γ), the LCA reduces to:

u = ΦTΓy −Ha
a = u− � , (6)

where H = ΦTΓ ΦΓ − I , and all vector and matrix terms
with subscript Γ are restricted to the subset or subspace
corresponding to the active nodes.

We can solve this system for equations for a, yielding:

a = (ΦTΓ ΦΓ)−1(ΦTΓy − �) . (7)

Introducing feedforward gain error �Φ and recurrent gain
error �H terms into the LCA modifies the solution to ã =
(ΦTΓ ΦΓ + �H)−1

(
(ΦTΓ + �Φ)y − �

)
. For small error, the term

(ΦTΓ ΦΓ + �H)−1 can be approximated as the more tractable
(ΦTΦ)−1 − (ΦTΦ)−1�H(ΦTΦ)−1. Using the identity from
(7), we can approximate the output of the LCA with error to
be:

ã ≈ a− (ΦTΓ ΦΓ)−1�Ha+ (ΦTΓ ΦΓ)−1�Φy . (8)

Both major error terms will be multiplied by (ΦTΓ ΦΓ)−1.
Given eigenvalue decomposition ΦTΓ ΦΓ = V ΛV T , then if all
the eigenvalues are nonzero, (ΦTΓ ΦΓ)−1 = V Λ−1V T .

The eigenvalues of the inverse matrix bound the amplifi-
cation of any multiplication errors; the inverse of the small-
est eigenvalue of (ΦTΓ ΦΓ)−1 is the upper bound of error
amplification. This amplification is clearly seen in the small
2x3 network. In the narrow region where the two dictionary
elements [0, 1] and [.6, .8] are both active,

ΦTΓ ΦΓ =

[
1 .8
.8 1

]
,



which has eigenvalues of 1.8 and 0.2. In this region, therefore,
certain errors are multiplied by 5, which causes a noticeable
deviation from the digital solution (seen in Fig. 2).

The larger network has a much larger set of possible
subspaces of active dictionary elements, which gives a much
larger range of amplification. When, for example, the first,
second, third and fifth nodes are active, the upper bound for
amplification is 200. In 100 random trials, however, this state
was never observed; the typical upper bound on amplification
was closer to 6. In future implementations we could use
these large deviations from digital solutions to estimate the
sources of the error from (8). An iterative programming and
testing algorithm would be able to gradually eliminate the most
prevalent sources of error.

Dictionaries that limit the range of their eigenvalues are
considered to observe the Restricted Isometry Property (RIP).
Enforcing the RIP proved difficult for a 4x6 matrix (especially
with the other constraints placed upon it), but is easier for
larger matrices. Candés et al. discuss a number of ways in
which these matrices may be generated [5]. In CS applications,
randomly populating the dictionary creates a matrix Φ that
observes the RIP with high probability. For instance random
Gaussian matrices will satisfy the RIP condition when M >
KS log(N/S) and randomly sampled discrete Fourier matri-
ces will satisfy the RIP when M > KS log4(N) for some
constant K. In these cases, we note that M is significantly
larger than S, which when the elements of a matrix are random
can readily ensure that the eigenvalues of ΦTΓ ΦΓ will be
sufficiently large for any subset of columns Γ. This indicates
that the errors amplified in the small scale implementations
will not occur for large CS matrices.For example, in the
simulations in Section V-B (when M/S = 0.05), we never
observed an eigenvalue less than 0.6, corresponding to error
amplification of 1.66. We would therefore expect an analog
implementation at that scale to have errors 3 times smaller
than those in 4x6 system.

The RIP will not necessarily be observed in other applica-
tions, but the average eigenvalues should not change with the
size of the system. We can therefore predict that the average
error should not increase with matrix size.

C. Power and Scaling

The power used by the RASP 2.9v implementation of the
LCA is dominated by two terms. First is overhead: 703µA
used by the FPAA even when nothing is programmed, and
an additional 20µA for the high speed current-to-voltage
converter.

The rest of the current flow can be accounted for with the
OTAs, since every source to sink path in the LCA passes
through at least one OTA. The OTAs are differential pairs with
a double current mirror, so they naturally use twice their bias
current, separate from any sourcing or sinking any current.
Since every signal in the LCA chip sinks into an OTA, we
can simply sum all the active currents in the chip to find the
total additional power use.

Each VMM input requires an OTA. The current mirrors for
the inputs also require an OTA, and they sink twice the input
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Fig. 7. Small signal model of the current mirror and VMM used to determine
OTA biasing.

current. The soft thresholder requires two OTAs, and sinks
twice the lateral inhibition Ha, twice the threshold current �,
and twice the output a. The total current used by the system
is therefore:

ITOT = (M +N)(2IV ) + (M + 2N)(2IM ) (9)

+2∣∣y∣∣1 + 2∣∣Ha∣∣1 + 2N�+ 2∣∣a∣∣1 ,

where IV is the bias current of the VMM OTAs, and IM is
the bias current of the mirror OTAs.

In both of the networks we built, IM was set to 500 nA,
sufficient to sink three 60 nA currents (the third being used
only when the node is directly measured) while maintaining a
high OTA transconductance. IV was set to 500 nA in the 2x3
network, and to 800 nA in the 4x6 network.

Excluding overhead, the active circuits of the 2x3 LCA
had a total current of 11.8µA, with small variations from the
signals being passed. This is actually less than the 13µA that
would be expected from (9)). The total power use of the 4x6
system was only 31.1µA, again somewhat less than the 32µ
predicted by (9). These discrepancies are most likely due small
innacuracies of the bias current programming.

The OTAs must have a bias current large enough to sink or
source all the appropriate currents while maintaining a high
transconductance, as indicated in the following analysis.

1) Determining OTA Biasing via Circuit Analysis: The bias
currents of the OTAs (and thus the power budget of the chip)
are set so as to maintain signal independent gain across the
nFET current mirrors. A small signal model of the current
mirror and its interface with the VMMs are illustrated in Fig. 7.
There are two sources of non unity gain: a conductive divider
at the input, which prevents all of the source current iSRC
from entering the mirror as iIN ; and a conductive divider at
the output of the mirror, which prevents the output current
iOUT from fully entering the VMM as iVMM .

The first conductive divider is split between the output
conductance of the VMM, g0 = 1/r0, and the effective input
conductance of the mirror gIN . Since the OTA creates an



amplifier on the other side of the input resistance, we can
use the Miller Effect to calculate the effective conductance:

gIN =
1 +GAR0,A

1/g1 + 2R0,A
,

where g1 is the transconductance of the input nFET, and gA
and rA are the transconductance and the output resistance of
the OTA. The total conductive divider for the input is therefore:

iIN
iSRC

≈ GAR0,A

(g0/g1 + 2g0R0,A) + (GAR0,A)
. (10)

From [20], the output conductance of the floating gates used
in the VMM is dominated by transconductance generated by
the capacitive coupling from the drain to the floating gate. In
subthreshold operation, we can therefore model g0 = � ISRC

UT

where � ≈ .04 is the coupling coefficient, ISRC is the drain
current of the floating gate, and UT ≈ 26 mV is a constant.
Since g1 = ISRC

UT
, we can substitute g0/g1 = �. We can rewrite

(10) as a function of currents:

iIN
iSRC

=
R0,AIA/UT

(� + 2�R0,AISRC/UT ) + (R0,AIA/UT )

≈ IA
2�ISRC + IA

, (11)

where IA is the bias current of the amplifier. To maintain
unity gain, with an error less than 1% we must maintain IA >
8ISRC . Note that the required bias current is independent of
the number of nodes.

A similar analysis can be done at the VMM input:

iVMM

iOUT
≈ GB

(1 + �)1/r0,2 +GB

≈ IB
(1 + �)�IOUT + IB

, (12)

where IB is the bias current of the VMM OTA, � is the
sum of all the weights being generated by the OTA, and
� = �UT /VA ≈ .0125, is a constant for these devices.
In order to maintain error less than 1%, we must maintain
IB > 1.25(1 + �)IOUT .

The bias current of the VMM OTAs scale with �, the total
weight being generated by that row of the VMM. As the
number of nodes N grows, the VMM will have to source that
many currents. The average weight of the multipliers will tend
to decrease as the dictionary elements spread out through the
M dimensional input space. � should therefore approximately
scale as N/

√
M . For very large N , the M +N VMM OTAs

will dominate the total power use of the system:

ITOT ∝ (M +N)(2
N√
M

). (13)

For a fixed M/N , this yields total power scaling of O(N
√
N).

D. Temporal Evolution of the System

Fig. 8 shows the evolution of the 4x6 LCA for a typical in-
put. The temporal evolution of the analog LCA was measured
by sending the current-mode outputs through a fast current-
to-voltage converter, which was then sent to a high speed
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Fig. 8. (a) Evolution of the output nodes on the 4x6 LCA for a typical input
case, converging to within 1 nA RMS of the final value in under 240µs. The
output of the I2V is sent to an oscilloscope, which begins measuring at time 0
when the current DACs are fully loaded. Nodes have slow dynamics at 0 nA,
accounting for long ramp up time. Dashed lines represent equivalent digital
solution for each of the three active nodes. (b) The current to voltage converter
(I2V), as implemented on the LCA the RASP 2.9v. Currents from the nodes
are input serially. A wide range amplifier (a component of the RASP 2.9v
CAB) is used in feedback, providing an effective transimpedance. The currents
can be independently measured by a picoammeter, allowing characterization
of the I2V and accurate estimation of the output currents.

oscilloscope. Each relevant node was measured in this way,
and their time courses following the setting of the current
DACs are superimposed in . The outputs settled to within 1 nA
RMS of their final values in 240µs.

The convergence curves varied considerably from predicted
LCA dynamics. Theoretical analysis [12] and simulations (V-
B) of the LCA’s temporal evolution show exponential conver-
gence for active nodes, in less than 10� . The theoretical upper
bound on convergence time was proportional to �/, where
� is the RC time constant, and  is the smallest eigenvalue
of the active subspace of the matrix Φ (the same term that
determines error amplification in Sec. IV-B).

We do not observe this purely exponential convergence in
Fig. 8. Instead we see a delayed start and decaying oscillations
that eventually converge on a solution. The slow ramp time
results from the dynamics of the current mirror circuit used
in the thresholder, which is not a simple RC filter when the
current is low.

The input resistance R can be derived from the small signal
model (Fig. 7) as:

R = r0∣∣
1/g1 + 2R0,A

1 +GAR0,A
≈ � UT

�IIN
+ 2

UT
�IA

(14)

For small IIN , the first term dominates, and the system
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Fig. 9. Dynamics of the thresholder circuit. (Left) If initialized to a near zero
current, the nodes have a slow ramp time. Time is measured in terms of the
time constant � , which characterizes the dynamics for currents above 3 nA.
Initializing the nodes at 100 pA would require adding switching circuitry to
the thresholder, but would reduce the long ramp up. (Right) Nodes should not
be initialized too far above zero, as signals take a long time to decay.

dynamics approach:

CLUT�

�

⋅IIN
IIN

+ IIN = ISRC . (15)

These dynamics can be observed in Fig. 9. By initializing
system inputs to zero, we guarantee that all nodes will also
start there. This initialization prevents the slow decay that
would be required if a signal changed from 50 nA to 0 nA.
The dynamics still impose a long startup latency while the
input node voltage is charged. This latency could be mitigated
by initializing the nodes to a higher value (100 pA in Fig. 9).

For IIN > IA�/2 ≈ 3 nA, the second term in (14)
dominates, and the system acts as a low pass filter with RC
time constant � = 2CLUT /(�IA). In order to make this the
dominant pole in the LCA system, the load capacitance CL
was made extremely large—over 50 pF—by shorting it to a
chip pad. The capacitance could be reduced to 2-3 pF, the
capacitance of a vertical routing wire, at the cost of deviating
somewhat from the LCA dynamics. This could speed up
convergence times by a factor of 10 or more.

In addition to the approximately 240µs required for con-
vergence, each 8-bit input DACs takes 5.8µs to load, and
reading an output node requires 520 ns, adding about 26µs for
interfacing. These costs are imposed by the microcontroller,
and are not inherent to the RASP 2.9v.

As the system scales, we would expect the convergence time
to scale with the time constant � = 2CLUT /(�IA). Of these
constants, only the load capacitance CL will increase with
scale at roughly O(N). But since CL is already much larger
than necessary, a custom built large N implementation would
actually be expected to converge faster.

V. SIMULATED CS RECOVERY

The system described in Section III provides evidence that
the LCA can be implemented in an analog hardware system
with reasonable accuracy. While these results are encouraging,
the current size of this implementation makes it impossible to
evaluate its performance on CS recovery applications directly.
In this section, we demonstrate the possible performance of

the LCA on large-scale CS recovery problems by simulating
the ideal dynamical system (described in equations (4)), illus-
trating that the potential benefits justify continued efforts to
scale up the current implementation. Specifically, in the first
set of simulations (Sections V-A and V-B), we use synthetic
stylized data to thoroughly explore the solution quality and
solution times with (simulated) analog and digital approaches
for N = 1000. In the second set of simulations (Section V-C),
we use very high dimensional MRI data to show performance
on a large-scale problem of practical importance.

A. LCA solution quality

To begin, we investigate the quality of simulated LCA
solutions on CS recovery problems with synthetic data to
verify that they are comparable to standard digital algorithms.
While the LCA system is proven to converge asymptotically to
the unique BPDN solution, the approximate solution achieved
by any algorithm in finite time can have different characteris-
tics depending on the particular solution path. In the general
problem setup, the unknown signal a0 ∈ ℝN is S-sparse and
is observed through M < N Gaussian random projections,
y = Φa0 +�, where � is additive Gaussian noise. We compare
the simulated performance of the LCA at recovering a0 BPDN
against the interior-point method l1-ls [25] and the gradient
projection method GPSR [26]. This enquiry will address two
main questions. First, are solutions produced by the simulated
LCA as accurate as the digital comparison cases? Second,
what solution times are possible in the simulated LCA?

We draw the nonzero coefficients of a0 using a Gaussian
distribution with variance 1 and we draw the locations from a
uniform distribution. The choice of regularization parameter �
depends on the variance of the additive noise � which is not
necessarily known a priori. We have empirically observed that
� = .01∥ΦT y∥∞ gives good performance in this task when the
noise variance is 10−4. Additionally, we observe that as with
many other algorithms, implementing a continuation method
by gradually decreasing � (similar to that used in FPC [27])
also improves convergence time in the LCA. Specifically, we
initialize � = ∥ΦT y∥∞ and allow a multiplicative decay of
0.9 at each iteration of the simulation until � reaches the
desired value given above. Although the implementation of the
current hardware only supports a constant threshold value over
time, inclusion of a decaying threshold is possible by having
temporally changing threshold currents Itℎ at the threshold
units. To ensure that the comparison among the algorithms is
fair, we use the same stopping criterion for convergence based
on the duality gap upper bound proposed in [25].

To explore solution quality we display the results of solving
the CS recovery optimizations using plots inspired by the
phase plots described by Donoho & Tanner [28]. We parame-
terize the plots using the indeterminacy of the system indexed
by � = M/N , and the sparsity of the system with respect to the
number of measurements indexed by � = S/M . We vary � and
� in the range [.1, .9] using a 50 by 50 grid. For a given value
(�, �) on the grid, we sample 10 different signals using the
corresponding (M,N,S) and recover the signal using BPDN.
We compare the results of the simulations by displaying in
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Fig. 10. The solution quality of the simulated LCA on a compressed sensing recovery task is comparable to the standard digital solvers GPSR and l1-ls. The
top row plots the relative MSE of the estimated signal for synthetic data, with indeterminacy of the system indexed by � = M/N , and the sparsity of the
system with respect to the number of measurements indexed by � = S/M . The middle row plots the value of the BPDN objective function at the solutions.
The bottom row plots the relative MSE in the solutions between the solvers, indicating the the differences in the LCA solutions are within the normal range
of differences between the digital algorithms themselves. Note that all solvers demonstrate more variability in regions where the problems are more difficult
and signal recovery cannot be performed well.

the top row of Fig. 10 a phase plot for each algorithm, where
the color code depicts the average relative MSE of the CS
recovery for each algorithm (calculated by ∥â− a0∥22 / ∥a0∥22).
In a similar vein, the middle row of Fig. 10 shows the energy
function (i.e., the BPDN objective function) evaluated at the
solution, 0.5 ∥y −Φâ∥22 + � ∥â∥1.

The near identical plots for the two metrics above demon-
strate that the LCA is indeed finding solutions of essentially
the same quality as the comparison digital algorithms, both
in terms of signal recovery of the compressively sensed
signal, and in terms of the optimization objective function.
When the LCA and digital solutions are compared directly,
we find that the average difference in the solutions dif-
fers only by a relative mean-squared distance (calculated by
∥âLCA − âDIG∥22 / ∥âDIG∥

2
2) of 1.97 ⋅ 10−4 when compared

to l1-ls and 6.64 ⋅10−4 when compared to GPSR. For compar-
ison, the rMSE of the difference between the l1-ls solutions
and the GPSR solutions is 9.71 ⋅ 10−4, meaning that the LCA
solutions have variability comparable to what the pair of com-
parison digital algorithms has between their solutions. We note
that the solution differences are significantly larger between all
of the algorithms in the regimes where CS recovery is difficult
and poor solutions are found by all solvers, as demonstrated
by the bottom row of plots in Fig. 10.

B. LCA convergence time

To observe the potential solution times for the LCA in
large-scale CS problems, we compare the convergence of the
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Fig. 11. Temporal convergence of the simulated LCA compared to GPSR.
The plot shows the relative MSE of the signal recovery as a function of time
for sample trials (N=1000) from the results in Fig. 12 using GPSR (left)
the simulated LCA (right). The convergence behavior is approximately the
same, with harder problems taking both algorithms longer and decreasing the
fidelity of the recovery. For the easy and medium difficulty problems where
BPDN recovers the signal with good fidelity, GPSR takes 0.1-1 seconds to
converge and the simulated LCA takes 101� -103� seconds to converge. For
reasonable values of � , the LCA solution times can still be as low as 10µs,
supporting datarates of up to 100 kHz

LCA and GPSR on three specific signals in easy, medium and
hard CS recovery problems with the same synthetic data as
above (corresponding to different values of �, �). Figure 11
shows the convergence of the relative MSE as a function of
time for GPSR and the simulated LCA for three example
signals. GPSR times are reported using measured CPU1 time,

1Time is measured on a Dell Precision Desktop with dual Intel Xeon E5420
Processors and 14GB of DDR3 RAM.
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Fig. 12. Convergence behavior for the simulated LCA for a number of different problem sizes (N ,�,�). Each plot demonstrates the change in convergence
based on easy, medium and hard CS recovery problems (i.e., 3 combinations of (�, �)) for N = 200 (left), N = 500 (middle) and N = 1000 (right). While
there is no appreciable increase in convergence time with increased problem size (larger N ), similar to standard behavior with other optimization algorithms
the LCA convergence time does increase with problem difficulty (smaller � and larger �).

and LCA times are reported using the number of simulated
system time constants � . The simulation parameters used
are identical to the previous simulations. While the solution
paths have generally similar characteristics, the time scales are
dramatically different. Focusing on the easy and medium CS
problems that produce good recovery using ℓ1 minimization,
GPSR is converging in times on the order of 0.3 seconds,
whereas the LCA is converging in times on the order of ten
time constants (10� ). These simulated times are consistant
with the reported times for the hardware implementation
described in section IV. We also note that while the results in
Fig. 11 are for individual signals for direct comparison with
GPSR, the analysis of average case convergence for the LCA
shown in Fig. 12 and discussed below also support the same
basic conclusions about the LCA convergence time.

Though the time constant of an analog circuit depends
on many factors (including the bias current and resulting
power consumption of the circuit), � = 1µs is a reasonable
projected value for a dedicated implementation based on the
discussion in section IV-D and previous reports [16]. Under
this assumption, the simulated LCA is converging for CS
recovery problems in approximately 10µs of simulated time.
Even state of the art digital solutions using high performance
computing (either multi-core processing [29] or graphical
processing units [30]) currently only achieve speeds in the tens
of milliseconds for comparably sized problems. This type of
solution speed from the LCA is several orders of magnitude
faster than GPSR and could support solvers running in real
time at rates of 100 kHz.

Finally, we also investigate the effect of problem size N
and problem difficulty (�, �) on the convergence speed of the
LCA. For the same parameters corresponding to easy, medium
and difficult CS recovery problems as used above, we sample
10 signals at three different problems sizes (N = 200, N = 500
and N = 1000) to perform CS recovery. Figure 12 displays
the relative distance of the signal estimate a(t) from the true
solution a as a function of simulated time, ∥a(t) − a∥2/∥a∥2.
The plots are again shown as a function of the simulated
time in terms of the number of system time constants � . As

expected, convergence is faster and more reliable (i.e., less
variance) for easier recovery problems (i.e., lower sparsity or
more measurements). Interestingly, we note that increasing the
signal size N does not appear to increase the number of time
constants required for the LCA solution. In a digital algorithm
such as GPSR, while the number of iterations may not increase
substantially, the solution time scales with N2 because the
cost of each iteration (e.g., a matrix multiplication) increases
significantly. In an analog system like the LCA, increasing
the size of a matrix multiply requires increasing the circuit
size and complexity, which may increase the time constant as
discussed in section IV-D.

C. MRI Reconstruction

The previous subsection demonstrated that for stylized
problems with synthetic data the LCA can achieve BPDN
solutions and signal recoveries comparable to standard digital
solvers. Furthermore the LCA appears to converge to solutions
at speeds that would represent an improvement of several
orders of magnitude over digital algorithms. In this section we
demonstrate the potential value of this system on a medical
imaging application that could be significantly impacted by
having real-time CS recovery techniques. Specifically, in this
section we simulate the LCA recovery of undersampled MR
images to evaluate the solution quality and speed. Compressive
MRI is of particular interest because it allows shorter scan
times, which improves both patient throughput and lowers risk
(e.g., shorter scan times mean that pediatric MRIs may be
taken more often without general anesthesia [9]). Furthermore,
compressive MR imaging combined with real-time image re-
construction would potentially allow new medical procedures
to be performed using real-time 3-D imaging without using
ionizing radiation.

We simulate CS data acquisition on 21 frames of a dynamic
cardiac MRI sequence2 by subsampling the Fourier transform
of each image (i.e., taking random columns of k-space). Each
image is 256x192 pixels, and we recover the images by solving

2The MRI data used was acquired using a GE 1.5T TwinSpeed scanner
(R12M4) using an 8 element cardiac coil.
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Fig. 13. Reconstruction of 256x192 pixel MR images from simulated CS acquisition. The simulated LCA and the comparison digital algorithm (YALL1)
find solutions of approximately the same quality in terms of relative MSE and image quality. YALL1 finds the solution in approximately 10s, while the LCA
finds the solution in approximately 20 time constants (20µs for � = 1µs).

BPDN to find sparse coefficients in a wavelet transform.
Specifically, we solve the BPDN optimization program where
the sensing matrix Φ = FWH is an inverse wavelet transform
followed by a subsampled Fourier matrix, and recover the
image by taking the wavelet transform of the solution to
the BPDN problem. The choice of wavelet transforms in this
case is very important, as transforms which are coherent with
the Fourier subsampling scheme can result in poor results.
We follow the work of [9] and use a 4 level 2-dimensional
Daubechies wavelet transform as the sparsifying basis. The
resulting optimization is more difficult than the synthetic data
in the previous two sections because the signals are larger
and the images are sparse in a wavelet basis instead of the
canonical basis.

We compare results of recovery using the simulated LCA
and another standard digital solver YALL1 [27]. Figure 13
shows an example MRI image and its reconstruction using
both the LCA and YALL1. The average relative MSE (using �
= 0.001) over all 21 recovered images was 0.0109 for YALL1
and 0.0106 for the simulated LCA. The relative differences
between the LCA and YALL1 solutions was 0.0042, indi-
cating that the solution quality is essentially the same for
both approaches. YALL1 took approximately 10 second of
computation time to reach this solution (on the same computer
platform used in the previous simulations), while the LCA
took approximately 20� simulated seconds. For � = 1µs,
this translates to datarates of approximately 50 kHz. Recovery
for such large-scale problems may require more nodes than a
single chip can provide. In these cases stringing together a
series of smaller chips or developing a block-wise method
of recovery would still allow the benefits of using analog
hardware for the CS recovery.

VI. SCALING AND CONCLUDING REMARKS

The LCA analog circuit has been presented as the solution
to the class of sparse approximations defined in (3). A pair
of example circuits were implemented on the RASP 2.9v,
and successfully converged on results that were similar to a
digital solver. This analog solution is particularly targeted for
low powered applications, such as channel sensing [10] for
portable devices. While we have demonstrated the successful
operation of the system at small sizes (N=6), we must scale

TABLE I
PERFORMANCE COMPARISON

System LCA LCA LCA (Hyp.) CPU [29]
Size 2×3 4×6 666×1k 1k

Power (Active) 28.3µW 74.6µW 149mW ≈3.8W
(Total) 1.76mW 1.81mW 151mW ≈100W

Time (Cvg.) 240µs < 240µs 46ms
Time (Total) 266µs 4.62ms 46ms
Error (RMS) 2% 5% ≈ 5% -

Extra Cost 0.2% 1% ≈ 1% -

to much large sizes in order to create a viable application.
The simulations provided in the last section demonstrates
the potential value of the LCA for CS recovery, validating
continued efforts to scale up our implementations.

The RASP 2.9v will allow moderate scaling of the LCA.
The chip contains 18 8-bit DACs and enough stand-alone
nFETs for 36 current mirrors. Since the thresholder nodes
require two current mirrors, the number of inputs M and
outputs N is limited by M + 2N ≤ 36. This suggests a
practical maximum size of about 8x14. Scaling to this size
would not significantly impact total power output (which
would still be dominated by overhead costs), and would only
meaningfully impact the interface time to load and retrieve
data (since convergence time would be relatively fixed).

Scaling to much larger sizes (N ≈ 1000) would require
a more application specific chip than the RASP 2.9v. This
hypothetical chip would require on the order of one million
FGEs, which should be implementable given our current
technology. The RASP 2.9a, a 5 mm x 5 mm 350 nm process
chip used in [20], already contains 133,000 FGEs. Switching
to a 130 nm process would allow over one million FGEs on a
chip the same size as the RASP 2.9v.

At this scale, we would still not expect the convergence
time to change markably (since the capacitive load would not
exceed that of a chip pad) as seen in the simulations; the
total time would be dominated by interfacing costs, which
would scale to 4.4 ms. Improvements could be achieved by
implementing some parallelization. Power consumption would
be dominated by the O(N

√
N) scaling of the VMM OTAs,

to about 149 mW. Accuracy would remain relatively constant,
since the average error and average eigenvalue do not scale



with problem size. These results are summarized in Table I.
These hypothetical results compare extremely well with

state-of-the-art digital BPDN implementations [29], [30].
Borghi et al. report solving BPDN for N = 1024 in 46 ms
using an Intel i7 CPU (Table 2 in [29]). Estimating that this
calculation required 1.2GMACs over 46ms, and that the i7
CPU calculates 7GMAC/s/W, we can estimate the active power
requirements for the calculation at 3.8 W, more than 25 times
as much power as the LCA.

The LCA could be increased to 4000 nodes by using
a full 2 cm x 2 cm reticle, with over 16 million devices.
Further scaling would require either multiple chips, or a
denser process. Although the circuit shown here had only
single sided inputs and outputs, four-quadrant behavior can be
easily implemented. Extra nodes must be added to represent
negative outputs, while negative multiplication can be induced
simply by connecting the driving VMM outputs to the negative
input of the thresholding device (or for the recurrent VMM,
connecting them to the positive input terminal).

The hardware LCA should be easy to integrate into CS sys-
tems, since it already contains mechanisms for rapid data in-
terface. Because the multipliers used here are reprogrammable,
we can use the system to recover arbitrary linear compressions
of sparse signals (using a number of recovery methods [31]).
The multiplier weights can also be made to adapt to structure
in the input and learn more efficient dictionaries (as in [7],
[32]), allowing this system to be used even when the sparsity
basis is unknown. Ultimately, we envision this technology
enabling CS recovery with ultra low power (as in [10]) or
real time processing (as in [9]).
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