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Many interesting systems are modeled as networks with dynamic
interactions between the nodes (e.g., neural networks, social net-
works, sensor networks). Recurrent interactions between these nodes
create a type of short term memory (STM) where the transient
network state collectively retains information about past inputs. Char-
acterizing the fundamental limits of STM in networked systems is
critical to understanding the computational abilities of these networks.
For example, fundamental questions include determining the effects
on memory capacity of network size, connectivity patterns, and input
statistics. One canonical model for network interactions has the form:

x[n] = f (Wx[n− 1] + zs[n] + ε̃[n]) , (1)

where x[n] ∈ RM are the network states at time n, W is the (M ×
M ) recurrent (feedback) connectivity matrix, s[n] ∈ R is the input
sequence at time n, z is the (M × 1) projection of the input into the
network, ε̃[n] is a potential network noise source, and f : RM → RM

is a possible pointwise nonlinearity. The general idea is that if W is
rich enough (often taken to be random connections), a single input
will reverberate in the network, thereby creating a “memory” of the
past input in the current network states.

The STM capacity of the linear version of this network model
(i.e., f (x) = x) has recently been extensively studied [1]–[4].
Existing analyses (using various assumptions and definitions of
“capacity”) derive STM capacity limits of N ≤ M , meaning that
the number of past inputs significantly recoverable by the current
network state scales linearly with the number of nodes in the network.
The main contribution of the work described in this abstract is to
leverage the established guarantees of the compressed sensing (CS)
literature to provide rigorous, non-asymptotic recovery error bounds
for sparse input sequences that show network STM capacities can
be significantly higher than the number of the nodes in the network
(as hinted at in [1]). Our analysis characterizes the impact on STM
capacity of the input sparsity level and sparsity basis, as well as
the characteristics of the recurrent connectivity matrix. We provide
both perfect recovery guarantees for finite inputs, as well as results
on the recovery tradeoffs when the network has an infinitely long
input sequence. The latter analysis highlights the fact that when the
network has an infinitely long streaming input, the system has an
optimal recovery length that balances errors due to omission and
recall mistakes.

To be concrete, we assume that every length-N segment of the
input sequence s[n] can be written using the basis Ψ with S non-
zero coefficients. Next, we write the network dynamics as a CS
measurement operation. The linear dynamics of Eqn (1) can be used
to write the network state at time N in terms of the input signal
and the iteratively applied connectivity matrix x[N ] = As + ε

where, A is a M × N matrix, the kth column of A is W k−1z,
s = [s[N ], . . . , s[1]]T , the initial state of the system is x[0] = 0,
and ε is the node activity not accounted for by the input stimulus (e.g.
the sum of network noise terms ε =

∑N
k=1W

N−kε̃[k]). Interpreted
as a CS problem, we see that if A satisfies the restricted isometry

property (RIP) (i.e. A forms a tight frame for sparse signals) for the
sparsity basis Ψ, established error bounds from the CS literature [5]
provide strong guarantees on recovering s from the current network
states x[N ] via `1 minimization.

The simplest network construction amenable to analysis arises
when W is a random orthonormal matrix (as in [1], [2], [4]) and
z = 1√

M
U1M , where 1M is a vector of M ones and U is the

matrix of eigenvectors ofW . Under this construction above, our main
technical contribution extends existing recent results [6] on randomly
subsampled Discrete Time Fourier Transform matrices to show that
A satisfies the RIP if the number of nodes M satisfies the inequality

M ≥ C S

δ2
µ2 (Ψ) log4 (N) log

(
η−1) , (2)

where δ is the RIP conditioning ofA, N is the length of the recovered
input signal, S is the input sequence sparsity, C is a constant, µ (Ψ)
quantifies the similarity between the sparsity basis Ψ and a randomly
sampled DTFT, and η is a small pre-determined probability of failure
to satisfy RIP. The main consequence of this result is that the STM
capacity of the network scales exponentially in the number of nodes
when the sparse structure of the inputs is exploited (compared to
linear scaling of existing results not exploiting signal structure).

The work described in this abstract also generalizes this basic result
in two ways. First, we also consider the case of infinitely long input
sequences (when the network has decay properties). In this setting,
when one chooses the length of the signal to recover, we establish
bounds on the recovery error for the decayed input signal. The main
technical approach here treats older input signals as network noise
and then applies the earlier recovery bounds established via the RIP.
Interestingly, this analysis indicates that a given network has an opti-
mal signal length that should be recovered because it balances errors
due to omission and recall mistakes. Second, we also analyze several
other network constructions that achieve other desirable properties
(e.g., small world networks, block diagonal connectivity matrices,
random input weights z), showing that these networks also satisfy the
RIP conditions in Eqn (2) (sometimes while incurring a reasonable
penalty). The analytic results described here are also supported by
illustrative simulations showing that the qualitative behavior matches
quantitative characteristics of the theoretical guarantees.
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