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Many modern signal processing applications can be stated in
terms of performing inference on sparse signals that have significant
dependencies between those signals. Consider the task of recovering
signals a,, € R™ from incomplete and noisy linear measurements
Yn = Pp, + €,, where ®, € RM*VN 5 the potentially time-
varying measurement matrix, €, is the measurement noise, and
n € K is an index (e.g., temporal or spatial). Many methods estimate
each x, independently by assuming that @, is sparse in some
dictionary (x, = Da, with a sparse). More recent methods have
sought to leverage inter-signal dependencies through joint inference.
For example, in some applications (e.g. recovery of video sequences
or dynamic MRI) n € K C Z represents a time index and we wish
to recover ordered sparse signals with a known dynamics model

Tn :f(wnfl)"_u'nq (1)

where f (-) : RY — RY describes the dynamics and v is the model
error (called an innovation). In applications such as hyperspectral
imagery (HSI), n € K C Z X Z represents pixel location and we
wish to recover sparse spectral signatures with spatial regularity [1].

We desire a stochastic filtering approach that leverages sparse
structure of single signals, exploits dependencies between signals,
and is computationally efficient enough to apply on high-dimensional
datasets. Classic approaches to stochastic filtering either have restric-
tive assumptions (i.e., Gaussian assumptions in Kalman filtering) or
are so general that it is difficult to incorporate specific strong sparsity
assumptions (i.e., particle filtering). More recent approaches have
addressed aspects of jointly estimating sparse signals. For example a
number of algorithms have been developed for recovering temporally
evolving signals when the support stays constant [2], [3], or when
a known function relates the signals through time [4], [5]. Other
algorithms have been proposed for when there is no temporal ordering
but the signals have common support or correlated signal values (e.g.
multiple measurement vector [6]).

We propose an approach to stochastic filtering for sparse signals
based on reweighted ¢; (RWL1) optimization that can incorporate a
number of different signal dependency structures. Standard RWL1 it-
eratively solves a weighted basis pursuit de-noising (BPDN) program
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while updating the weights as
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where Ao, 7 and 7 are algorithmic constants and the variables A,
are the weights. This optimization corresponds to using the EM
algorithm to perform inference in a hierarchical sparsity model (called
a Laplacian Scale Mixture model [7]) where the variances of the
sparse coefficients are themselves random variables. In our general
stochastic filtering approach, we modify the RWL1 program to update
the weights based on information from correlated signals
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where ¢(-) captures inter-signal dependencies. In the case of dy-
namic filtering, an example function is g(@rex)[i] = |an[i]| +
|D™!f (Dz) [i]|, which essentially predicts the sparse coefficients
via the known dynamics and uses it to bias the weights in the next
iteration of the RWL1 algorithm. In the case of spatial filtering, this
function captures unordered dependencies through operations such as
a linear summation of coefficients in a neighborhood of pixels (i.e.
using spatial regularity to bias the weights for a coefficient).

The proposed RWL1 approach to stochastic filtering has many
benefits. The approach is very general (i.e., treating temporal and
spatial dependencies in the same framework), and can leverage the
recent advances in specialized ¢; solvers for high-dimensional data.
Furthermore, by leveraging a hierarchical probabilistic model, this
approach provides explicit ways to incorporate new signal depen-
dencies into the conditional distributions of the coefficient variances.
Finally, by incorporating signal dependencies in the second order
statistics rather than via direct support set estimates, the proposed
approach appears to be much more robust to model errors than
existing approaches.

Previous work has shown state-of-the-art performance for the
proposed dynamic filtering algorithm (RWLI1-DF) on compressed
sensing video recovery. In this abstract, we focus on more recent
results illustrating the proposed spatial filtering algorithm (RWL1-SF)
on spectral superresolution of HSI from multispectral measurements.
In particular, we use HSI data to simulate multispectral measurements
and demonstrate that RWLI1-SF can be used to recover the ground-
truth HSI with a mean and median relative mean-squared error
(rtMSE) of 2.45% and 1.89% respectively. This represents a significant
improvement over using BPDN or RWLI1, and is particularly inter-
esting because the biggest performance gains come from areas of the
scene where the sparsity model is not performing well at capturing
the data (i.e., highlighting the robustness benefits of the approach).
As part of this work we will also show more detailed comparisons to
other work for our previous dynamic filtering algorithm RWLI1-DF.
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