Short-Term Memory Capacity in Recurrent Networks via Compressed Sensing Adam Charles¹, Han Lun Yap¹, Christopher J. Rozell¹ ¹Georgia Institute of Technology

Introduction

Short Term Memory (STM) in neural systems plays a vital role in a number of biologically important tasks: Prediction Classification • Working memory in biological networks [1] To understand STM, use **Echo State Networks** as a proxy. ESNs use random network connectivity [2]. Stimuli: $s[n] \in \mathbb{R}$ Feed-Forward vector: $\boldsymbol{z} \in \mathbb{R}^{M}$ Connectivity matrix: $W \in \mathbb{R}^{M \times M}$ Neural state: $\boldsymbol{x}[n] \in \mathbb{R}^{M}$ $\ldots s[n+1] s[n]$ $\boldsymbol{x}[n] = \boldsymbol{W}\boldsymbol{x}[n-1] + \boldsymbol{z}s[n]$ How much of the stimulus content is encoded in the network? • Previous work capped STM length as $N \leq M$ [3-4]. • More recent work suggests N > M when the stimulus has **low dimensional structure** [5]. We show increased STM for sparse input patterns using compressive sensing techniques. Compressive Sensing Compressive Sensing (CS): • Allows robust recovery of undersampled signals [6]. • Relies on distances preservation for compressible signals. • Many biologically relevant signals are compressible [7]. $y = Ax + \epsilon$ $oldsymbol{A} \in \mathbb{R}^{\scriptscriptstyle M imes \scriptscriptstyle N}$ 'Distance preservation' \leftarrow Restricted Isometry Property (RIP) A satisfies RIP with K, δ if $1 - \delta \le \|A\Psi^T x\|_2 / \|x\|_2 \le 1 + \delta$ for all K-sparse \boldsymbol{x} . K-sparse \boldsymbol{x} are robustly recoverable if \boldsymbol{A} satisfies RIP-(2K, δ) by solving $\widehat{\boldsymbol{x}} = rg\min \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\Psi}^{\mathrm{T}}\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$ λ trades off sparsity and data fidelity. The solution error is $\left\| \boldsymbol{\Psi}^{\scriptscriptstyle T} \widehat{\boldsymbol{x}} - \boldsymbol{\Psi}^{\scriptscriptstyle T} \boldsymbol{x}
ight\|_{_{2}} \leq lpha \left\| \boldsymbol{\epsilon}
ight\|_{_{2}} + eta rac{\left\| \boldsymbol{x} - \boldsymbol{x}_{\scriptscriptstyle K}
ight\|_{_{1}}}{\sqrt{K}}$ for constants α and β , and $\boldsymbol{x}_{\!\scriptscriptstyle K}$ is the best K term approximation to x. RIP usually shown to hold with high probability random matrices e.g. Random Gaussian matrices satisfy RIP with high probability if $M \ge CK\mu^2\left(\mathbf{\Psi}\right)\delta^{-2}\log\left(N
ight)$ Coherence $\mu(\Psi)$ measures similarity of Ψ and A [8].

Structured systems need more measurements



