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Introduction
Short Term Memory (STM) in neural systems plays a vital 
role in a number of biologically important tasks:
        Prediction
        Classification
        Working memory in biological networks [1]

Compressive Sensing

=

How much of the stimulus content is encoded in the network?
        Previous work capped STM length as             [3-4]. 
        More recent work suggests             when the stimulus has
           low dimensional structure [5].

Stimuli:
Feed-Forward vector:
Connectivity matrix:
Neural state:

    Compressive Sensing (CS):
        Allows robust recovery of undersampled signals [6]. 
        Relies on distances preservation for compressible signals.
        Many biologically relevant signals are compressible [7].

    trades off sparsity and data fidelity. The solution error is

We show increased STM for sparse input patterns 
using compressive sensing  techniques.

for all    -sparse   .     -sparse    are robustly recoverable if    
satisfies RIP-(2  ,  ) by solving

for constants    and   , and      is the best     term
approximation to    .

RIP usually shown to hold with high probability random 
matrices e.g. Random Gaussian matrices satisfy RIP with high 
probability if 

    Coherence           measures similarity of      and     [8].
    Structured systems need more measurements

To understand STM, use Echo State Networks as a proxy. 
ESNs use random network connectivity [2].

Showing The RIP

Finite Length Inputs

M

N

rMSE − Canonical

Capacity < M

Capacity
> M

200 400 600 800 1000

1000

800

600

400

200

M

N

rMSE − Symlets

Capacity < M

Capacity
> M

200 400 600 800 1000

1000

800

600

400

200

M

N

rMSE − Daubechies

Capacity < M

Capacity
> M

200 400 600 800 1000

1000

800

600

400

200

M

N

rMSE − DCT

Capacity < M

200 400 600 800 1000

1000

800

600

400

200

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0

0.5

1

1.5

2

The STM exceeds M for different sparsity bases with               so long 
as the coherence is low.  

Can we analyze ESN dynamics using the RIP? 

The RIP is satisfied by the ESN for N > M. Thus, compressible signals 
are recoverable. Secondary circuits such as the Locally Competitive 

Algorithm (LCA) could decode the network nodes [9].

(Storage) (Recovery)

0 100 200 300 400 500
−1

0

1

2

0 100 200 300 400 500
−1

0

1

2

0 20 40 60 80 100
−1

0

1

2

Encoding
Network Decoding

Network...

    Following Ganguli et al., 
System Model:

    Eigenvalue decomposition:

If we choose:

then we can show:    
             
    

      

Note:
         linear with   , logarithmic with 
    No error,   -sparse inputs      Perfect recovery

Guarantees on System Model:

    Random orthogonal
    

        is a subsampled Fourier transform
    RIP holds with high probability            if  

             
      with coherence to the set of all sinusoids.
    Recovery using 

      gives the error

Infinite Length Inputs

Conclusions

Network Types

Orthogonal networks can have different topologies:
        Fully Connected
        Modular (disjoint fully connected subgroups)
        Small World (sparsely connected subgroups of fully
                            connected neurons)

 Non-orthogonal      with same eigenvalue properties
 changes robustness, but not noiseless guarantees.

Feed-forward vector can be chosen at random - adds a log
factor:

If feed-forward vector is mis-aligned with the eigenvectors, 
the effective network nodes decreases.

Infinite length inputs necessitate 
      Eigenvalues of        have magnitude    < 1 
      Regular decay can be isolated as

    
      Effects of older stimuli are noise

Using the RIP condition, we can bound the error by

Noise Signal

Choose

The error bound in the infinite case has a minimum.
Recalling too much or too little history results in errors

We analyze the exact dynamics for ESNs using tools from 
compressive sinsing. In short:
        RIP shows that stimuli for ESNs are recoverable        
        Tractable recovery algorithm (even neural solvers)
        Many bases possible in finite case
        Infinite case demonstrates an optimal recovery length 
            (best STM length)
        Can account for some deviations from basic assumptions
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'Distance preservation'          Restricted Isometry Property (RIP) 
    satisfies RIP with   ,  if

Omission Errors (N = 300)

Approximately Optimal (N = 4000)

Recall Errors (N = 8000)
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rMSE = 0.8826

rMSE = 0.0964

rMSE = 0.1823


