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Showing The RIP

Introduction Infinite Length Inputs

Short Term Memory (STM) in neural systems plays a vital Can we analyze ESN dynamics using the RIP? Infinite length inputs necessitate
role in a qur_nber of biologically important tasks: System Model: eEigenvalues of W have magnitude g <1
* Prediction Following Ganguli et al., - - eRegular decay can be isolated as
e Classification S[N]
e Working memory in biological networks [1] z[N] = [z W2 Wiz sIN — 1] A r|N|=UZFQs + € Q =diag([l ¢ ... ¢*])
To understand STM, use Echo State Networks as a proxy. 5 e Effects of older stimuli are noise
ESNs use random network connectivity [2]. i s|1] _
- o _ 1 Choose [NV
Stimuli: s/ € R Eigenvalue decomposition: W = U DU o SV
Feed-Forward vector: z € R” F — ) c_ Z W zln) s— | SN 1]
Connectivity matrix: W e R ’ , ‘ _ LI T - o N*
Neural state: xz[n] € R" ZB[N] UZFs S SINT = N+ ]

Z :diag(U‘lz) Noise ‘ _Signal _ |

Using the RIP condition, we can bound the error by
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Guarantees on System Model:
If we choose:

x\n| =Waxn — 1]

Qs — Qs|| < asuu U],

then we can show: |e F'is a subsampled Fourier transform 1 —gq V.S 1 —gq
How much of the stimulus content is encoded in the network? * RIP holds with high probability 1 —7 if 1 oo Errore 4 = 300
e Previous work capped STM length as N < M [3-4]. M >CKp* (®)6 *log" (N)log(n™) it . TN MSE - 08826, ,
e More recent work suggests N > M when the stimulus has | | | N — Empirical Recovery
low dimensional structure [5] with coherence to the set of all sinusoids. I | \ \ . \ I — -Theoretical Bound
' o Recovery using T 1000 2000 3000 4000 5000 3,’ \ /

Approximately Optimal (N = 4000)

We show increased STM for sparse input patterns ‘MSE = 0.0964

using compressive sensing techniques.

s = argmin ||x[N] - UZFs|. + \||¥s],
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Recall Errors (N = 8000)
rMSE = 0.1823
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Compressive Sensing (CS): VK
e Allows robust recovery of undersampled signals [6]. Note: | - T 1000
* Relies on distances preservation for compressible signals. M linear with K, Iogarlthm|c with V
e Many biologically relevant signals are compressible [7]. *No error, K-sparse inputs — Perfect recovery
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The error bound in the infinite case has a minimum.
Recalling too much or too little history results in errors

Finite Length Inputs

Network Types

Orthogonal networks can have different topologies:
e Fully Connected
e Modular (disjoint fully connected subgroups)
e Small World (sparsely connected subgroups of fully
connected neurons)

Non-orthogonal W with same eigenvalue properties

>l Decodin _
Net f — s|n| changes robustness, but not noiseless guarantees.
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'Distance preservation' == Restricted Isometry Property (RIP)

A satisfies RIP with K, oif (Storage) g (Recovery) Feed-forward vector can be chosen at random - adds a log
1 -5 < HA\I’TZBH / HmH <144 The RIP is satisfied by the ESN for N > M. Thus, compressible signals factor:
~ 2 2 — are recoverable. Secondary circuits such as the Locally Competitive M > CK/f (\If) 52 10g5 (N) 10g (77—1)
for all K-sparse . K-sparse x are robustly recoverable if A Algorithm (LCA) could decode the network nodes [9]. —
satisfies RIP-(2K,9) by solving If feed-forward vector is mis-aligned with the eigenvectors,

rIMSEI—S)I/mletls the effective network nodes decreases.
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x =argmin ||y — AW z|[, + Az, /A
T Capacity 7 Capacity 7 .
. o | | N o s Conclusions
)\ trades off sparsity and data fidelity. The solution error is 7 L, 1
/ /
|z — x| Capacity <M | | 0. Capacity <M | | 10.5 We analyze the exact dynamics for ESNs using tools from
V' —¥'z|, < alle|,+ S AR | B} R compressive sinsing. In short:
vV K 200 400 600 800 1000 200 400 600 800 1000 e RIP shows that stimuli for ESNs are recoverable
. - e Tractable recovery algorithm (even neural solvers
for constants awand 3, and xx is the best K term 1000 WISE - Davbechies . 1000 Ml 7 e Many bases p()ssi{ﬂe?n finite iase )
approximation to . / ol L .
800 Capacity 77 2 800 2 e Infinite case demonstrates an optimal recovery length
RIP usually shown to hold with high probability random oo /oM 77 (Wi o 1.5 (best STM length)
matrices e.g. Random Gaussian matrices satisfy RIP with high = o il 15 o 1 * Can account for some deviations from basic assumptions
) ,
prObabIIIty If 200 d Capacity <M | [ 10.5 200 7 Capacity <M | t 10.5 k I d
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