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abstract
Neural networks have become a ubiquitous as cog-
nitive models in neuroscience and as machine learn-
ing systems. Deep neural networks in particular are
achieving near-human performance in many appli-
cations. More recently, recurrent neural networks
(RNNs) are being increasingly utilized, both as stand-
alone structures and as layers of deep networks.
RNNs are especially interesting as cortical networks
are recurrent, indicating that recurrent connections
are important in human-level processing. Despite
their growing use, theory on the computational prop-
erties of RNNs is sparse. As many applications
hinge on RNNs accumulating information dynami-
cally, the ability of RNNs to iteratively compress in-
formation into the network is particularly critical. We
thus present here non-asymptotic bounds on the net-
work’s short-term memory (STM; the number of in-
puts that can be compressed into and recovered from
a network state). Previous bounds on a random
RNN’s STM limit the number of recoverable inputs by
the number of network nodes. We show that when
the input sequences are sparse in a basis or the ma-
trix inputs is low-rank, the number of network nodes
needed to achieve an STM grows as the overall infor-
mation rate. Thus RNNs can efficiently store infor-
mation embedded in longer input streams, shedding
light on their computational capabilities.
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Introduction
Artificial neural networks have long been used as simpli-
fying models of biological neural networks with the goal
of better understanding fundamental cortical processes.
With advances in machine learning and neuroscience,
deep and recurrent neural networks are quickly achieving
human-like performance in many machine learning tasks,
further encouraging the study of cortical systems via their
artificial counterparts (Pitts, 1943; Hopfield, 1982; Cadieu
et al., 2014; Yamins et al., 2014; Majaj, Hong, Solomon,
& DiCarlo, 2015; D.L.K.Yamins & DiCarlo, 2016). Re-
current networks are and have been particularly relevant

to the modeling of cortical systems (Pitts, 1943; Hop-
field, 1982) as biological neural networks are not feed-
forward, and contain many recurrent connections. In-
terestingly, recurrent neural networks (RNNs) have seen
a recent resurgence in cortical modeling, in part due to
advances in training recurrent networks on experimental
tasks (Sussillo & Abbott, 2009; DePasquale, Cueva, Ra-
jan, Abbott, et al., 2018), and are also being increasingly
applied in many machine learning applications (Jaeger,
2001; Lukoševičius, 2012; Hinaut, Petit, Pointeau, &
Dominey, 2014). In both cases, these networks essen-
tially compress temporally evolving input stimuli over time
into a single network state, which can relay that informa-
tion upstream for use in data processing tasks, such as
classification or prediction of future events. In RNNs, tem-
porally evolving signals ssst ∈RL are iteratively input into a
network evolving as

xxxn+1 = f (WWWxxxn +ZZZsssn + εεεn), (1)

where xxxt ∈ RM is the state of the network at time t, ZZZ
is the feed-forward input matrix, WWW is the matrix of re-
current connections, εεεt is potential noise in the system,
and f (·) : RM → RM is a potential non-linearity (Jaeger,
2001; Wilson & Cowan, 1972; Amari, 1972; Sompolin-
sky, Crisanti, & Sommers, 1988; Maass, Natschläger, &
Markram, 2002). The dynamics of RNNs accumulate in-
formation from the inputs ssst over time into the network
state xxxt . While in general f (·) is a sigmoidal or thresh-
olding function, much of the analysis of RNNs has started
from the linear RNN, where f (xxx)= xxx. Additionally, a large
portion of the RNN and LSM literature has shown that
random connectivity (i.e. WWW and ZZZ are random) yield
complex dynamics useful for accumulating information.
We thus consider linear, random RNNs in this work.

The information available in the state of the RNN to
pass onto the later processing stages depends heavily
on how efficiently the RNN dynamics compresses the in-
puts into the state. One way to quantify this ability of
RNNs is to discuss the short-term memory of the net-
work, or the number of past inputs that can be recovered
from a network at any given time (Jaeger & Haas, 2004;
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Figure 1: Network and input structures for RNNs with
jointly sparse inputs (top) and low-rank inputs (bottom).
In both networks the inputs sss[n] are projected through the
feed-forward connections ZZZ and the temporally evolving
state xxx[n] feeds back into itself through the recurrent con-
nections WWW . In the joint-sparse model a set of sparsely
used features compose the input stream using the coeffi-
cients aaa. In the low-rank case a set of prototypical signals
VVV combine linearly through a set of coefficients QQQ to gen-
erate more generally correlated input streams.

Maass et al., 2002; Ganguli & Sompolinsky, 2010; Wal-
lace, Hamid, & Latham, 2013; Verstraeten, Schrauwen,
dHaene, & Stroobandt, 2007; White, Lee, & Sompolin-
sky, 2004; Lukoševičius & Jaeger, 2009; Buonomano &
Maass, 2009; Charles, Yap, & Rozell, 2014). For exam-
ple, if the state of the network at time N can recover sss1
up to sssN , then we can say that the number of recover-
able inputs (the STM) is LN. This quantity has been
extensively covered for single inputs (L = 1, and many
canonical results have shown that in general, the num-
ber of recoverable inputs is bounded by the network size
(M ≤ N) (White et al., 2004; Wallace et al., 2013). More
recent work has explored more particular cases where a
potentially long input sequence is well-characterized by a
small number of coefficients in a dictionary. Succinctly,
this model describes [s1 · · ·sN ]

T = ΨΨΨaaa, where at most
K elements of the coefficients aaa are non-zero. In this
case it was shown that the number of nodes necessary
to recover N past inputs actually grows as the information
rate M > K log(N), indicating that for structured inputs
(e.g. audio), networks can accumulate information over
much longer time-scales (Ganguli & Sompolinsky, 2010;
Charles et al., 2014). In particular, our results for single
inputs in (Charles et al., 2014) provide non-asymptotic
bounds on recovery, with no approximations on the net-
work dynamics, and demonstrated how such bounds can
be used to infinity-length input sequences.

Results

In this work we expand on previous work bounding the
theoretical capacity of RNNs to compress structured sig-
nals by proving non-asymptotic bounds on the STM of
RNNs for two classes of structured multiple-input mod-
els. We show that both for sparse signals (i.e. the con-
catenation of all input vectors sss = [sssT

1 ,sss
T
2 · · ·sssT

N ]
T = ΨΨΨaaa

where aaa has at most K non-zeros) and for low-rank in-
puts (the matrix SSS = [sss1,sss2 · · ·sssN ] = QQQVVV ∗ is at most rank
R < min(L,N)), the network size for a given STM again
grows with the information rate, rather than the number
of inputs. Specifically we prove two theorems that out-
line the necessary conditions on the structure of the input
sequence needed for recovery, as well as the optimiza-
tion programs that can be used to recover the signals
and the bounds on the solutions to those optimization pro-
grams (Charles, Yin, & Rozell, 2017).

Our approach is based on reformulating the network
dynamics such that the current network state xxx[N] can be
expressed as a linear function applied to the past inputs,
i.e. xxx[N] = A(SSS, and then showing that the function A
can be inverted under the given model for SSS.

In our first results, we show that for the case where
the input sequences are sparse, the number of nodes M
required to recover N L-dimensional input vectors grows
only as M > O(K logγ(NL)) - a rate that depends linearly
only on the overall sparsity K and poly-logarithmically in
the number of inputs NL. For the low-rank case, we find
a similar bound where the number of nodes must sat-
isfy M > O(R(N + L) logλ(NL)). This bound is linear
in the total number of degrees of freedom in the signal
R(N +L), and is again only poly-logarithmic in the num-
ber of inputs. Interestingly, both bounds also indicate the
limitations of RNNs. Specifically, in each case, a coher-
ence parameters µµµ appears, showing that random RNNs
are only excellent at compressing and storing sequences
that differ from Fourier vectors (either in the sparsity ba-
sis for the sparsity case or from the left singular vectors
in the low-rank case).

Simulations

To test our theory, we simulated a number of RNNs and
attempted to empirically extract the driving input stream
from the network state using LASSO and nuclear norm
optimization programs as in (Charles et al., 2017). In
particular, we test the effect of the compression levels,
defined as γ = M/LN, and the complexity of the sig-
nal, defined as ρ = K/M for sparse inputs and ρ =
R(L+N−R)/M for low-rank inputs, on the recoverability
of the inputs. Additionally, we test the effect of the input
structure, specifically the level to which the input repre-
sentation is coherent with a sinusoidal basis (i.e. if µ2

S
and µ2

L are low or high).
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Figure 2 depicts the results of 20 monte-carlo simu-
lations for each parameter set, fixing L = 40 inputs and
N = 100 time-steps while varying M and either the input
sparsity K or the input rank R, as appropriate. We can
see that for large parameter values, the relative mean-
squared error (rMSE) is very low (essentially at the noise
floor), indicating that the input can be recovered even
when M < NL, i.e. the entirety of all the input streams
have been successfully compressed into the single RNN.
The simulation results also validate our theory’s predic-
tion that a high coherence with a sinusoidal basis limits
the compressibility into RNNs.

Low-rank: low coherence Low-rank: high coherence
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Figure 2: Simulated recovery of sparse and low-rank in-
puts from echo-state networks. For each plot, the inten-
sity plots the relative mean-squared error (rMSE) over the
different parameter settings. Top left: at low coherence
values, the inputs are recoverable up to the noise floor for
many parameter settings and M < NL. Top right: at high
coherence the inputs are not recoverable for any M <NL.
Bottom left: For low-rank inputs there is similarly a large
range for which the theory holds. Bottom right: Similarly
for low-rank inputs a high coherence value severely limits
the recoverability of the RNN inputs.

Finally, our main theory focuses on finite-length input
streams. For infinite length inputs, an interesting effect
arises where the length of recovery is a parameter left up
to the recall system. When the recall system attempts
to recover too long or too short of an input stream, the
estimated inputs suffer from recall or omission errors re-
spectively (e.g. Fig. 3). In this case, our theory actually
predicts an optimal recall length for a given system (Fig. 3

Figure 3: Predicted optimal recall length. When per-
turbed by an infinite-length input, the network effectively
stores a decaying version of the input sequence (top).
The system then has an option of how many inputs to
attempt to recall (or utilize in computation). Recovering
too few inputs or too many inputs results in sub-optimal
recovery, due to recall (trying to recover inputs that have
long since faded) or omission (ignoring inputs still promo-
nantly effecting the network state) errors. Our theory pre-
dicts that there exists an optimal memory length between
these two regions that allows for optimal recall of the input
stream (bottom).

bottom), which can be calculated as a function of the net-
work parameters (Charles et al., 2014).

Conclusions
We demonstrated here two theorems which bound the
STM of linear RNNs when the inputs are structured. Our
theory predicts both that there can be very high stream-
ing compression of such inputs into randomly connected
networks as well as the limitation that the inputs must be
incoherent in their representation from a set of sinusoids.
When the inputs are too oscillatory, the bounds we prove
revert back to the general case M > N.

By demonstrating STM bounds, recovery algorithms
and accuracy guarantees, the culmination of these
bounds (both for the single input networks and multi-
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ple input networks), provide some of the most precise
STM characterizations of RNNs. While these bounds
only address the linear networks, we believe that the in-
tuition gained from proving these bounds begin to pro-
vide a method for discussing the computational capabil-
ities of neural networks. More specifically, despite our
bounds being derived for a more abstract model, the pre-
dictions in terms of the number of items retrievable from
the network state and of the existence of an optimal re-
call time might generalize beyond our simplifying assump-
tions. We thus believe that further investigation is war-
ranted — both theoretically and empirically — to assess
the applicability of these predictions in cortical systems.
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