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abstract

Accurate estimation of neural spike-rates is challeng-
ing due to fact that both stimulus-dependent spike-
rates and trial-by-trial noise are continuously time-
varying and that neural spiking is well known to ex-
hibit super- or sub-Poisson behavior. In particular,
the time-varying nature of the noise makes spike-
count statistics sensitive to choices in temporal bin-
size selection (Cohen & Kohn, 2011). While methods
have been proposed for both binless rate estimation
and non-Poisson activity (R. Goris, Movshon, & Si-
moncelli, 2014; Charles, Park, Weller, Horwitz, & Pil-
low, 2018), no current over-dispersion model can per-
form arbitrary continuous-time rate estimation. We
present here such a model, where we model the
stimulus-based rate as a Gaussian Process (GP), and
the rate driving the observed spiking is an additive
combination of the stimulus GP and a noise process
(also modeled as a GP), passed through a rectifying
nonlinearity. Our model significantly generalizes pre-
vious over-dispersion models by both removing the
bin-size dependence, as well as allowing estimation
of the latent continuous-time spike-rates. Our model
also explains the difference in statistics across bin
sizes by accounting for temporal correlations. Given
the noise parameters, we can estimate the stimulus
GP via a maximum a-posteriori optimization, using a
Laplace approximation to marginalize over the noise
instantiations. We demonstrate out model both on
simulated data as well as macaque V1 activity.
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Introduction

Relating observed neural spike trains to stimuli or behav-
ior is a key to uncovering the neural code. While some
methods generate latent variable models that attempt to
describe the entire processing pipeline, more often the
spike rate is estimated from the spike trains for more flex-
ible exploratory analysis. Depending on the analysis, this
estimation has historically been accomplished by averag-
ing the number of spikes per bin over multiple identical tri-
als, i.e. the Peristimulus time histogram (PSTH) (Gerstein
& Perkel, 1969), or by inferring the rate per bin under a
Poisson model. These estimations can be challenging,
however, due to a number of factors. For one, both these
methods rely on a seemingly arbitrary choice of bin-size;
a quantity that should have no impact of the analysis and

yet many statistics calculated with the binned rates are
sensitive to the choice in bin size (Cohen & Kohn, 2011).
Additionally, the Poisson assumption over the spike rates
does not match the observed higher-order statistics of
neural firing. Specifically, many neurons display over- or
under-dispersion, meaning that the variance of the spik-
ing process is above or below the mean (Shadlen & New-
some, 1998; Geisler & Albrecht, 1997; Eden & Kramer,
2010). Not accounting for this behavior in the rate esti-
mation can further bias the resulting estimates.

Recent advances have tackled each of these chal-
lenges separately. For the time-bins, both advanced
methods to select optimal bin-sizes (Shimazaki & Shi-
nomoto, 2007) or fully continuous time Poisson models
that bypass the need to bin at all (Mena & Paninski, 2014;
Truccolo, Eden, Fellows, Donoghue, & Brown, 2005) have
been proposed. To account for over- and under- dis-
persion, new models have been proposed to either aug-
ment or replace the Poisson model (R. Goris et al., 2014;
Charles et al., 2018; Stevenson, 2016; Gao, Busing,
Shenoy, & Cunningham, 2015; Pillow & Scott, 2012; Sell-
ers, Borle, & Shmueli, 2012; Moshitch & Nelken, 2014).
No method has yet, however, has performed bin-less in-
ference of latent spike-rates under an over- or under-
dispersed model

We present here such a model for over-dispersed spike
rates. Our method is based on a continuous time exten-
sion of previous work that models over-dispersion as la-
tent noise that effects the spike rate through a nonlinear-
ity (Charles et al., 2018). By extending the Poisson per-
bin count model to a full Poisson process, and extending
the latent Gaussian noise to a continuous-time Gaussian
Process (GP), we are able to model both of these chal-
lenging aspects.

Model details

Our model begins with a Poisson process that has a con-
tinuously changing rate function where the spiking pro-
cess for a neuron responding to a given stimulus at trial
m, ym (), is a

ym(t) = PoissonProcess ( fo(x(1) +mm(1))), (1

~

where x(r) is the stimulus-dependent term, n,(¢) is
a stochastic (continuous-time) modulation, and fg(

a non-linear rectifying function (here we use fy(
exp(-)). Letting T,,[i] indicate the i* event for trial m for a
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Figure 1: (a) Our model is a continuous-time latent GP
model, where the stimulus based activity is combined
with additive noise and passed through a point-wise non-
linearity before driving the spike train via an inhomoge-
nious Poisson process. (b) An example draw from our
model. The blue curve indicates the stimulus activity, the
orange curve represents the average rate over 100 noise
draws, and the red curves indicate the one-standard de-
viation spread. The larger variances at the higher rates
shows the super-Poisson nature of our model. The pur-
ple and gray curves show how binned PSTH estimates
either hide the latent rate’s behavior (large bins) or give
poor estimates of the rate under data constraints (small
bins). Example spike trains drawn from this model are
displayed in different colors. The green curve depicts the
accuracy of our estimate to the latent stimulus rate.

given stimulus, the likelihood of the observed spike times
given the underlying stimulus rate and additive modula-
tion is

e():f;"1 3t (Tli]) 1 (T [i])) o I Ot g

To infer the stimulus-dependent rate x(¢), we introduce

a Gaussian Process (GP) prior for both x(¢), and the ad- 5

ditive noise n,(t),

x(t) ~  GP(ux,Ki(tirt)))
mu(t)  ~  GP (tn, Ku(tis1}))

where the covariance kernel K,(#;,¢;) is taken to have a
radial-basis function (RBF) form,

i — 1P

K(ti,t;) = PCXP(—T)7

parametrized by the variance level p, the length-scale [
and the exponential power p, which differ for n,, () and
x(t). Since n,, (1) are nuisance variables which we do not
wish to infer, we instead focus on marginalizing out these
variables, instead using the spiking data for all trials to
only estimate x(¢). Additionally, it is impossible to infer
x(r) for all £ on a continuous domain, so instead we infer
x(t) at a subset T,[i] that sufficiently span the duration
of the trial. Letting X and 7, be x(7) and n,,(¢) evaluated
at each T ,[i], we seek to solve
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which can have the integrals with respect to n,, and x
calculated analytically to yield
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where K, ;; » and K 5 are the noise and stimulus covari-
ance matrices between the estimate times and the ob-
served spike times on the m'" trial, K5 7 and K 5 are the
noise and stimulus covariance matrix only between the
estimation times, and § depends only on the GP parame-
ters and covariance matrices. To evaluate the remaining
integral, we use a Laplace approximation, allowing us to
use gradient descent optimization to solve for Xx.

Results

To assess our model, we validate the estimation accuracy
both in simulation and on data from macaque V1. We first
sample from the process as in Figure 1b and assess the
recovery of the latent process as a function of the num-
ber of trials available. Our estimation is fairly accurate,
as measured by the relative mean-squared error (rMSE)
and becomes more accurate with an increased number
of trials (Fig. 2).

Finally, we compare the log-normal process model and
the negative binomial (NB) model on data from 113 V1
cells collected in macaque V1 by Graf et al. (Graf, Kohn,



Jazayeri, & Movshon, 2011) This dataset contains spike-
time data collected from all 113 neurons from 72 different
stimulus orientations, each presented 50 times (50 trials).
First we fit the negative binomial model as in (R. Goris et
al., 2014) by fitting g to have a Gamma hyper-prior dis-
tribution. Figure 3 demonstrates that the variance fit to
this hyper distribution is not consistent when the data is
binned at different bin sizes. To fit the log normal pro-
cess, we manually set the two parameters p and [ in the
log-normal process covariance kernel. Figure 3 also dis-
plays that the fit log-normal process better captures the
data variance as a function of bin size.
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Figure 2: Recovery of spike-rates from simulated data in-
dicates that our method is accurate (most latent rates es-
timated to within 10% relative mean-squared error), and
our estimation accuracy improves with additional data
(more trials).

Conclusions

We present here a new model of continuous-time over-
dispersion and a related estimation procedure for infer-
ring the latent stimulus-related rate directly from spike-
trains with no need for binning. Our model is influenced
by recent work in characterizing over-dispersion in neu-
ral firing (R. Goris et al., 2014; N. R. R. Goris, Ballé, &
Simoncelli, 2015; Rabinowitz, Goris, Cohen, & Simon-
celli, 2015; Charles et al., 2018). Specifically, our model
can be considered a continuous-time extension of previ-
ous work on flexible over-dispersion models for binned
data (Charles et al., 2018). The extension to continu-
ous time incurs extra complexity in that enough samples
of a Gaussian Process need to be estimated to approx-
imate an integral. While in our method here we use a
simple Riemann approximation, other methods such as
the quadrature methods (e.g. (Mena & Paninski, 2014)) to
approximating the integral could be easily used by modi-
fying a single weight vector. The ability of our method to
bypass binning while still accounting for over-dispersion
warrants additional inquiry. For example, developing fast

tools for inferring the latent rate and understanding the ef- 3
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Figure 3: Two different V1 neurons (data collected by
Graf et al.) demonstrate different cross-bin-size statis-
tics. Each plot shows the relative variance across trials
as a function of bin-size (normalized to the Poisson vari-
ance). Our model can explain the variance over all time
bins, as opposed to the Poisson model and a recent over-
dispersion model (R. Goris et al., 2014).

fects of the GP parameters on the estimates would make
this methods more applicable in a wider setting.

Finally, while our model assumes a particular form for
the non-stimulus contribution to spiking (i.e. the noise
GP), there are many mechanisms that could cause such
a contribution. Being able to better partition the two ad-
ditive components without the confounding factor of bin-
ning, and to tune the time-scale of the noise model, can
lead to improved understanding of the entire neural circuit
in addition to improved rate estimation.
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