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Abstract—Causal inference of dynamically changing signals
is a vital task in many applications, including real-time image
processing and channel estimation. Over the past few years,
many algorithms have been proposed to accomplish this task,
but extremely few algorithms have any theoretical guarantees
on stability, convergence or performance. In this work we use
results from the sparsity-based signal processing literature to
demonstrate some basic bounds for one particular algorithm:
basis pursuit de-noising with dynamic filtering (BPDN-DF). We
show for what parameter ranges the algorithm remains stable for,
and provide some guarantees on the steady-state approximation
error.

Index Terms—sparse signals, dynamic filtering, convergence

I. INTRODUCTION

In the past few decades, signal processing tools have evolved
to exploit the underlying structure present in many classes of
signals. In particular, dynamic signal structures, (present in
many temporally evolving signals such as video sequences and
dynamic MRI), and sparsity signal structure (present in many
high dimensional signals) have been explored extensively and
have played a vital role in many state-of-the-art algorithms.
The first of these signal structures deals with signals that
evolve through time with a known dynamics update equation
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where z,, € RY is the dynamically evolving signal at time-
step n, f(-) : RNY — RY is the dynamics function, and v,, €
RY is the innovations term that describes the imprecision in
our knowledge of the dynamics function. In many applications
we are only able to measure the dynamic signal indirectly via
a measurement equation

Yn = Pz, + €, 2

where y,, € RM is a set of M linear measurements taken by
the measurement matrix ® € R™*~ and €,, € RM is the mea-
surement error vector. Since typically M < N, a major task is
often to utilize the limited measurements in conjunction with
the dynamics information to recover the underlying signal x,,.
Furthermore, many applications require real-time solutions,
indicating that efficient and causal inference procedures are
required. Many algorithms, including the widely used Kalman
filtering algorithm and its many extensions and modifications
have been highly successful when dynamics information is

the only additional information available to supplement the
measurements [1]-[3].

The second type of structure that has achieved widespread
success is the sparsity signal structure. Many high dimensional
signals can be considered to have parsimonious descriptions
in some basis [4], [5], i.e. a signal = can be written as

x=Va, 3)

where ¥ € RY*Y is a known basis and a € RY is the
coefficient vector that only has K < N non-zero entries. Such
a signal is said to be K-sparse. This sparse structure can be
used when undersampling signals as in the dynamics case to
supplement the measurements and invert underdetermined lin-
ear systems. This ability has allowed sparsity to be leveraged
to great effect in many areas of signal processing, including
image processing, audio processing and remote sensing [4],
[6], [7]. Specifically, both fast and efficient algorithms as well
as theoretical guarantees for the resulting solution have been
explored.

Very recently, algorithms have begun to be developed which
leverage both dynamics and sparsity in applications where both
structures are present (e.g. dynamic MRI). The goal of these
algorithms is to obtain more accurate signal estimates at each
time step than is achievable by leveraging either dynamics or
sparsity alone. While some algorithms seek to modify well
known algorithms, (e.g. Kalman filtering) to include sparsity
assumptions [8], [9], other algorithms modify optimization
programs used for sparse signal analysis to include dynamic
information [10]-[13]. While many of these algorithms have
been shown to work empirically, theoretical guarantees have
largely only been proven for restricted signal models. In this
work we focus on providing theoretical guarantees for one
specific optimization-based approach called basis pursuit de-
noising with dynamic filtering (BPDN-DF). In this procedure,
a third norm which captures the dynamic signal structure is
added to the basis-pursuit de-noising algorithm used exten-
sively for sparse signal estimation. We establish parameter
ranges that ensure stability of this algorithm, and provide
extreme worst-case bounds for the steady-state error.



II. BACKGROUND
A. Sparse approximation

Sparsity has been a highly successful signal model due to
both the existence of efficient algorithms that can leverage
sparsity and theoretical guarantees on the accuracy of such
algorithms. One of the most widely used algorithms which can
recover the sparse representation of a signal a from a small
number of linear measurements is basis pursuit de-noising. In
this algorithm, the optimization program used to recover the
coefficients,

a = argmin [ly — ®al3 +llall:, )

is a convex optimization program consisting of an /5 penal-
ization on the measurement error (the measurement fidelity
term) and an ¢; term which encourages sparse solutions. The
parameter vy determines the tradeoff between sparseness and
measurement fidelity. The signal is then easily recovered via
the multiplication £ = Wa. Since here we treat ¥ as a basis,
estimation errors on a translate directly to estimation errors
on x, so we will focus on recovery results concerning a.

Given certain conditions on the measurement matrix, it
can be shown that the solution of BPDN can achieve a
bounded accuracy. One of the most common properties of
the measurement matrix which is used to determine these
theoretical bounds is called the restricted isometry property
(RIP). For a linear operator ® € RM*N  we say that @
satisfies the RIP of order 2K with respect to a basis ¥ with
parameters 0 and C, if for every 2K sparse signal a, the norm
of ||®¥al|? is bounded as,

C(1-90) < [®Pal3/al} < C(1+0), (5)

This condition essentially states that the difference between
any two sparse signals is preserved to within a factor of 1+4,
indicating that different sparse signals are still distinguishable
in the smaller measurement space. Using the RIP, it has been
shown that the coefficients recovered via BPDN satisfy the
bound

la —allz < Cillell2 + C21/4; (6)

where C; and C5 are constants which depend on the RIP
constant § of the measurement matrix, and ¢ is a constant
multiple of the sparsity of a.

B. Sparsity based dynamic filtering

A number of algorithms have recently combined the sparsity
model with traditional dynamics models. While a number
of these models perform batch-based optimization (solving
for multiple, consecutive signals at once) [14]-[17], many
more have focused on the traditional filtering problem where
only the most recent signal x,, is recovered at each time n
using only past measurements and estimated signals. An early
attempt at leveraging both dynamic and sparse information
modified the traditional Kalman filtering equations to provide
sparse outputs [8], [9]. These methods retained the estimation
and propagation of a covariance matrix, which can become

computationally inefficient with high-dimensional signals. A
more recent approach has modified the efficient optimization
procedures, such as BPDN, to include dynamics informa-
tion [10]-[13].

While optimization-based methods have been empirically
successful, few of the theoretical guarantees from the sparsity
framework have carried through to the dynamical setting.
Exceptions include the work in [18] and [19]. In [18] a bound
is provided for the modCS algorithm under a model where the
innovation is much sparser than the signal and the dynamics
model has bounded changes on the support. In [19] the authors
do not assume any dynamics model explicitly but still observe
the tracking abilities of the iterative soft thresholding algorithm
(ISTA).

C. Basis pursuit de-noising with dynamic filtering

To expand the theoretical guarantees currently available,

we analyze here the BPDN-DF algorithm. In the BPDN-DF

algorithm the optimization in Equation (4) is modified by
adding a third norm as

a, = argminlly, —®al3+1lal;

+h[®a — f(¥a,-1)|3, )

where « is a second tradeoff parameter. While in the previous
literature, ¢, norms with p # 2 were considered for the third
dynamics fidelity term, we focus here on the /5 case since
fast solvers are readily available for this optimization program.
With two tradeoff parameters to consider in BPDN-DF, setting
these parameters can be difficult. With the dynamic nature
of the algorithm to consider, poor performance can propagate
through the algorithm and can potentially cause instabilities.
Thus showing which ranges of parameters yield a stable
algorithm could yield insight into the algorithm’s performance.
We dedicate the remainder of this paper to describing a first
result along these lines which analyzes the behavior of this
algorithm. Specifically we seek constraints on x which ensure
that the algorithm remains stable for large classes of dynamics
functions f(-), and to then provide worst case scenario bounds
for the error of the resulting estimate.

ITII. CONVERGENCE OF BPDN-DF
Our main result is summarized in the following theorem:

Theorem IIL.1. Suppose that at each time-step n, ® € RM*N

satisfies RIP(2K,5), v > 0 and k > 0 are known constants.
Additionally, suppose that the dynamics function f () satisfies
IIf (@a1) = f(a2)|l2 < f*|lar — az||2 and that for all n > 0
the error and innovations satisfy ||€,|l2 < € and ||v,]2 < 7.
Under these conditions, the result of solving the optimization
program of Equation (7) satisfies
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where the constant o is given by

1 K ¥
=Ci——€¢+C v+ C ,
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and the linear convergence rate is

p=0C

K *
A

and the constants Cy and Cy are the constants from the bounds
on solving the static BPDN problem with sparsity K and a
modified RIP parameter § = 8/(1 + k).

This theorem essentially states that BPDN-DF is guaranteed
to converge at a linear rate 5 so long as 3 < 1. Solving for
in this constraint gives us an upper bound on

1 *
H<7(C1*f*)2—1 Cr*f*>1
1
SR CEYDE
which guarantees that there will be a range of parameters for
which the algorithm is stable. In the first condition, a larger f*
requires a smaller C; value to have the same rage of admissible
 values. This means that less smooth dynamics functions need
a more accurate BPDN solver to stay stable. Likewise, a less
accurate solver requires a smoother dynamics function to be
stable for the same « range. In the second of these conditions,
x must be greater than a negative number, which implies that
all positive x values result in a stable algorithm.

Cixf*<1

To prove Theorem III.1, we first show that the BPDN-DF
optimization problem at each iteration is a BPDN problem
where the sensing matrix satisfies the RIP with a better
constant than the associated inference that does not include
dynamic filtering. Theorem III.1 is then a direct consequence
of using the theoretical guarantees from [19], [20] to obtain
a per-iterate error bound, which can be related to the error
at the last iteration, allowing for a recursive error bound to
be determined. First, we assume that the matrix ® satisfies
the RIP(2K, §) with respect to signals sparse in W. We
then note that we can combine the first and third terms in
the BPDN-DF optimization Equation (7) into an augmented
BPDN optimization
2
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Which is essentially trying to solve the BPDN problem
with the augmented matrix ® = [¥7®T \/kPT]T, and the
factor of 1/(1+ &) is introduced to normalize the columns of
the augmented measurement matrix. Thus the first step is to
show that ® satisfies the RIP as well, and for more favorable
constants. Since we assumed that @ had RIP(2K,5), we can
find the RIP of ® by observing the upper and lower bounds

of the norm of || ®al|? for any 2K -sparse a:
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C-s-n §)||a|/2. Thus the RIP constants for ® are C = (C +
k)/(1 + k) and § = C8/(C + k). Assuming is well
normalized (i.e. C' = 1), these expressions reduce to C' = 1
and § = 0/(1 + k). Since & is always positive, this implies
that 6 < 0 and the conditioning on the augmented matrix
is improved with respect to the original system. It remains,
however, to show that the improved conditioning yields any
tangible benefits given that new errors are introduced in the
innovations term.

In the BPDN bounds we need to know the /5 error of the
measurements o,, which in this case depends on both the
actual measurement error as well as the dynamics error. The
augmented system has to account for the errors not only in
the dynamics model (the innovations term), but also in the
previous estimate. We can thus bound the error by observing
that

K

T (W) — Pay)
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Using the smoothness assumption on f(-), we can see that

f(¥a,—1) — Pay,)|2

K
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With this inequality, and the assumptions that ||€, |2 < €
and ||z, ||2 < 7 for all n, the effective measurement error on
the augmented is then
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where f* is the Lipshitz constant for the function f.
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The general form of the BPDN solution satisfies
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where C and C are constants, which can vary depending on
the techniques used [19], [20]. We can use this bound with the



per-time-step o, from Equation (9) to find the time-dependent
bound
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This relationship is essentially a simple linear difference
equation and is easily solved for the error at each time step:

lealle < 5" (lleolls = 725 ) + 7

indicating that this algorithm converges linearly with rate [
when 8 < 1 and the steady state error as n — oo is ||eco||z2 <

a/(1=p).
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IV. SIMULATIONS

We validate our bound by comparing to the empirical
behavior of BPDN-DF. We run BPDN-DF on sequences of
100 K = 15-sparse signals of size N = 576. At each time
step we take M = 68 measurements. We recover the sequence
of signals using BPDN-DF with v = 5.5 x 10~ and sweep
 over 30 possible values. We average all our results over 50
trials. We fit our theoretical bounds by selecting C; and Cs
such that they fall above the empirical curves. Figure 1 shows
That the convergence time increases as predicted by the theory
(nconvergence log_1 ). The worst-case-scenario nature of
the bound, however, creates a gap in the predicted steady-
state error. The theoretical curve for the error does not predict
the dip that occurs for the optimal x value, and instead has
a monotonically increasing value from x = 0, the point that
corresponds to simply running BPDN independently at each
iteration.

V. CONCLUSIONS

In this work we have derived worst-case bounds for the
BPDN-DF algorithm based on results from the sparse approxi-
mation literature. Our results guarantee ranges of the parameter
k for which the BPDN-DF algorithm converges to a steady-
state error and bounds the time to convergence. In exploring
the upper bound for x we see that there appears to be a tradeoff
between the accuracy of the BPDN solver (in terms of C1)
and the smoothness of the dynamics function (in terms of f*.
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Fig. 1. The theoretical bound was fit to empirical curves of BPDN-DF’s
behavior as a function of . Top: The empirical number of iterations to
convergence (solid blue curve) generally increases as a function of &, as
predicted by theory (dashed red curve). The dip in the empirical curve
corresponds to the crossover point as the steady-state error increases from
being below the initial error to being above the initial error. Bottom: The
derived bound accounts for the worst possible recovery at each time-step, and
thus yields an extreme upper bound in terms of the steady-state error.

Our empirical results show that while the bound does seem
to capture the convergence properties, the nature of the worst-
case bounds over-estimates the steady-state error, indicating
that tighter bounds for the actual error can be pursued.
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