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Abstract—
Accurate estimation of undersampled time-varying signals

improves as stronger signal models provide more information
to aid the estimator. In class Kalman filter-type algorithms,
dynamic models of signal evolution are highly leveraged but
there is little exploitation of structure within a signal at a given
time. In contrast, standard sparse approximation schemes (e.g.,
L1 minimization) utilize strong structural models for a single
signal, but do not admit obvious ways to incorporate dynamic
models for data streams. In this work we introduce a causal
estimation algorithm to estimate time-varying sparse signals. This
algorithm is based on a hierarchical probabilistic model that
uses re-weighted L1 minimization as its core computation, and
propagates second order statistics through time similar to classic
Kalman filtering. The resulting algorithm achieves very good
performance, and appears to be particularly robust to errors in
the dynamic signal model.

I. INTRODUCTION

Many real-time applications, such as real-time compressive
video acquisition or real-time network tomography, require us
to causally estimate a time-varying signal from a sequence
of measurements. Such causal signal estimation is sometimes
referred to as dynamic filtering. While batch methods that seek
to estimate a series of correlated signals have flexibility in
terms of how to leverage correlations between the signals,
dynamic filtering is a more restrictive problem in at least
three ways. First, no future data is available, limiting the
information that can be used at each time step. Second, since
dynamic filtering typically needs to be performed over long
time spans, approaches require a concise and efficient way to
store the previous information needed for estimation. Lastly,
the actual estimation procedure at each time step needs to be
computationally efficient to be effectively applied to the data
stream.

In this paper, we focus on time-varying signals where we
have an a-priori model for how the signal evolves in time,

xn = fn (xn−1) + νn

where xn ∈ RN is our signal of interest, fn(·) : RN → RN is
our dynamic evolution function (which is potentially different
at each time step) and νn ∈ RN is the innovations. The
innovations represents the error in our assumed dynamic model
fn(·). In this work we will be particularly interested in the
case where the signal xn is sparse in some representation
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(i.e xn = Ψan where an is mostly composed of zeros).
We denote a signal to be s-sparse if only at most s non-zero
coefficients are present. The signals themselves are sensed via
a linear sensing matrix

yn = Gnxn + εn

where yn ∈ RM are the measurements taken at each iteration,
Gn ∈ RM×N is the sensing matrix and εn is the measurement
error. While in some applications it may be convenient to have
Gn be the same at each iteration, here we treat the general
case where the measurements are different for all n.

Our goal is to use only information available at time n
to infer xn. This means that we have access to all yk for
k ≤ n. While generally we could design an estimation
procedure which uses all yk directly to infer xn, such an
estimation procedure would be computationally impractical
as n becomes large. Instead we focus on methods similar to
Kalman filtering [1] which use local information efficiently by
retaining a set of parameters to use in the estimation procedure.
In standard streaming estimation procedures such as Kalman
filtering, the parameters used are the covariance matrix and
the previous state estimate. The use of the covariance matrix,
however, relies on Gaussian and linear assumptions that are
not present in applications where the signals and innovations
do not follow Gaussian statistics. In this work we stray from
these assumptions since sparse signals follow a different set
of statistics, requiring us to utilize different parameters native
to sparse signals.

To date, a number of algorithms have been designed to
address the problem of dynamically filtering undersampled,
sparse, time-varying signals. Some of these methods seek to
directly modify the equations that stem from the Kalman filter
directly to account for sparsity [2], to use the Kalman filter
equations on a restricted support [3], or to use sparse recov-
ery optimization problems with additional norms to include
temporal information [4]. Other methods work on specific
time-varying models, such as characterizing the innovations
to be sparser than the signal itself [5] or treating the signal’s
temporal evolution as a Gauss-Bernoulli signal with Markov
transitions on the support [6]. We propose a methodology
which uses precisely the same problem formulation as the
Kalman filtering problem, but design a new probabilistic
model to account for the non-Gaussian nature of the signal. We
then derive an expectation-maximization (EM) algorithm that
recovers the signals. Lastly, we test the resulting algorithm,
reweighted `1 dynamic filtering (RWL1-DF), showing its
effectiveness and robustness to the innovations’ statistics.
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II. BACKGROUND

A. Kalman Filtering

Most standard dynamic filtering techniques are based on the
Kalman filter [1]. In the Kalman filter framework, the signal at
each time step is recovered using the estimate of the previous
time step x̂n−1 and a calculated covariance for that estimate
Pk−1.

x̂n = arg min
x

[
‖yn −Gnx‖22,Rn+

‖x− Fnx̂n−1‖22,(Qn+FPn−1FT )

]
where R ∈ RM×M is the covariance matrix for the mea-
surement error, Q ∈ RN×N is the covariance matrix for
the innovations, F ∈ RN×N is the linear version of the
dynamics function fn(·), and the matrix weighted norm is
defined as ‖z‖22,R = zTR−1z. The allure of the Kalman
filter is that while the optimization in Equation (II-A) uses
only local information, it solves a global optimization problem.
This property, however, is due to the linearity of both the
measurement and dynamics functions as well as the Gaussian
nature of the signal, measurement error, and innovations.

In cases where the linearity and Gaussianity conditions are
not met, alternate methods based on the Kalman filter have
been proposed. The extended Kalman filter, for example, ad-
dresses the case of non-linear dynamics by linearizing around
a point [7]. The EKF is limited, however, in that vary nonlinear
functions are not well approximated by the linearization. Par-
ticle filtering techniques seek to bypass needing closed form
solutions to the signal statistics by performing Monte-Carlo
type sampling. The sampled points are used to approximate
moments of the signal statistics to use in the estimation
procedure. One of the more well known versions is the
unscented Kalman filter (UKF) which uses a sampling scheme
that targets minimal distortion in the second moment [8]. None
of these various extensions, though, allow for straightforward
incorporation of explicit signal structure such as sparsity.

B. Sparse Signal Recovery

We seek to incorporate sparsity structure in to dynamic
filtering due to its growing utility in a number of important
applications (e.g. inverse problems in image processing [9]
and hyperspectral imagery [10]). With sparsity knowledge
of a signal, the signal can be recovered from many fewer
measurements than would otherwise be required [11]. Typical
measurement rates grow linearly with the sparsity and poly-
logarithmically with the ambient dimension [11]. In standard
sparse recovery, the signal coefficients a may be recovered
using the Basis Pursuit De-Noising (BPDN) optimization

ân = arg min
x

[‖yn −GnΨa]
2
2 + λ‖a‖1

where ‖z‖1 =
∑
i |z[i]| is referred to as the `1 norm and λ

trades off between the `2 data fidelity term and the `1 sparsity
inducing norm. The signal is then reconstructed via x̂ = Ψâ.

The BPDN optimization assumes that the variable λ (rep-
resenting the SNR for each coefficient) is known a-priori and
the same for each coefficient, which may not be the most

accurate signal model. One way to extend BPDN is to use
a different value of λ for each coefficient and adapt these
values depending on the data. While a complete optimization
problem can be written in terms of minimizing a cost function
for both the coefficients a and the λ parameters λ (where
dim(λ) = dim(a)), the desired (non-convex) program is
typically solved via a variational algorithm where λ is updated
between solving a series of weighted BPDN programs [12].
In particular, this reweighted `1 (RWL1) optimization program
solves

âtn = arg min
a

[‖yn −GnΨa]
2
2 + λ0

∑
|λ̂t−1n [i]a[i]|

with the weight update

λ̂tn[i] =
τ

|âtn[i]|+ η

where λ0, α and β are constants, t is the algorithmic iteration
number (taken to increase until some convergence criterion
has been met) and the signal estimate is x̂n = Ψân.

As described in [13], the RWL1 approach described above
can be viewed as a Bayesian inference problem for a hi-
erarchical probabilistic model. In [13], the coefficients an
and are treated as Laplacian random variables (conditioned
on λ variables) to be inferred from the linear measurements
under Gaussian measurement noise assumptions (Gaussian
likelihood p(y|a)). The λ parameters are treated as random
variables with Gamma hyperpriors, and these values modulate
the variances of the Laplacian coefficient priors. Once these
distributions are defined, the reweighted optimization comes
from applying an expectation-maximization (EM) approach
to solving the complete MAP inference. The distribution on
λ can be adjusted based on any information we have about
the signal being estimated (i.e., encouraging or discouraging
coefficients to be active a priori by making λ likely to be
small or large). Therefore, this hierarchical probabilistic model
provides a way to include additional regularization information
from the temporal dynamics model into the second moments
of the variables of interest, much like in the Kalman filtering
framework.

III. RE-WEIGHTED `1 DYNAMIC FILTERING

In our approach, we wish to encourage the signal estimate
to take on values predicted using a temporal model while not
explicitly penalizing errors. In essence, we seek to influence
the estimate by having the weights (in the RWL1 iterations)
be affected both by the past signal estimate as well as the new
measurements. Our probabilistic model accomplishes this task
via the second order variables, embodied by λ.

In our probabilistic model construction, we retain key
features of the RWL1 model that give it the sparsity induc-
ing properties while inducing temporal correlation by tying
together the distributions of the hyperpriors with the previous
state. Our variable probability distributions are defined as

p(yn|an) ∝ e−
1

2σ2
‖yn−GnΨan‖22 (1)

p(an[i]|λn[i]) = λ0
λn[i]

2
e−λ0λn[i]|an[i] (2)
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p(λn[i]|λn−1) =
λα−1n [i]

θαn [i]Γ(α)
e−λn[i]/θn (3)

where α and λ0 are constants, and θn is the vector which
controls the mean and variance of the Gamma distribution
over λn,

θn[i] = ξ
(
|Ψ−1fn(Ψan−1)[i]|+ η

)−1
for some model parameters ξ and η. The graphical represen-
tation of this probabilistic model (shown in Figure 1) shows
that the variable dependencies causally feed forward in time,
implying additional regularization which we can leverage in
the signal estimation.

Fig. 1. The flow of information in the RWL1-DF model has temporal priors
where the current variance values are dependent on a function of the past
state.

We can use these distributions to write a MAP estimate for
an and λn at time n as{
â, λ̂

}
= arg min

a,λ
− log

(
p(yn|an)p(an|λn)p(λ|λ̂n−1)

)
By plugging in the distributions in Equations (1)- (3), we can
use the EM approach to derive update steps for ân and λ̂n.
Specifically, we derive the update equations

âtn = arg min
a

[‖yn −GnΨa]
2
2 + λ0

∑
|λ̂t−1n [i]a[i]| (4)

and

λ̂tn[i] =
(1 + α)ξ

λ0ξ|âtn[i]|+ |Ψ−1fn (Ψân−1) [i]|+ η
. (5)

In the standard RWL1 algorithm, values that are estimated
to be high in the weighted `1 optimization result in lower
weights via the weight update step, while off values result in
higher weights. In the next weighted `1 optimization, these
weights encourage the ‘on’ values to remain on and obtain
higher values while encouraging ‘off’ values to remain low
and tend to zero. Equation (5) for our modified RWL1-DF
algorithm allows the weights to also be effected by past
estimate, encouraging predicted values to be active while still
allowing for information from the measurements to contradict
the prediction and correct the estimate. One major advantage
here is that since no explicit norm ties the prediction and the
estimate together, the estimation procedure should be more

robust to the statistics of the innovations, a behaviour we see
empirically in our simulations.

IV. RESULTS

We test the RWL1-DF algorithm both on simulated data
and compressive recovery of a video sequence. We compare
performance against the BPDN and RWL1 algorithms applied
independently at each time step and a time dependent version
of BPDN (BPDN Dynamic Filtering: BPDN-DF) that includes
an additional history-dependent regularization norm as

ân = arg min
a
‖yn −GnΨa‖22 + λ‖a‖1 + γ‖a− fn (ân−1) ‖pp

where λ and γ are constants that trade off between historical
information, sparsity, and measurement fidelity, p dictates
the assumed innovations statistics, and the signal estimate is
x̂n = Ψân [4], [14]. In simulated data where ground truth
is known, we also compare against an optimal oracle (i.e.,
support is known a-priori) least-squares solution. To evaluate
the recovery, we use the relative mean-squared error (rMSE),

erMSE =
‖x̂− x‖22
‖x‖22

.

In the case of simulated data, we generate 100 time-
step sequences of 500-length vectors that are 20-sparse. The
dynamics function is a randomly drawn permutation matrix
with a random scaling (the dynamics are different at each
iteration). The dynamics are assumed to be known up to a
few misplaced support, implying a sparse innovations where
the sparsity is twice the number of misplaced values, and the
measurements matrices are random Gaussian matrices. For the
simulated data we use the recovery parameters: λ = 5.5∗10−4

for BPDN, λ0 = 0.0011, τ = 2 and η = 0.01 for RWL1,
λ = 5 ∗ 10−4, γ = 2.5 ∗ 10−4 and p = 1 for BPDN-DF, and
λ0 = 0.0011, η = 0.01, λ0ξ = 1 and (1+α)ξ = 2 for RWL1-
DF. First we fix the mean innovations sparsity to 6 (the support
mismatch is Poisson with mean 3), and sweep the number of
measurements from 55 to 110. The steady state rMSE was
averaged over 40 trials and the results are plotted in Figure 2.
The steady state rMSE for RWL1-DF stays at less than 1%
rMSE down to 65 measurements, at which point BPDN-DF
(with p = 1 due to the sparse innovations) has approximately
7% rMSE and both BPDN and RWL1 are over 20% rMSE.
We then fix the number of measurements to M = 70 and
sweep the mean innovations sparsity from 2 to 10 (again the
mismatch is a Poisson). While for small innovations sparsity
BPDN-DF and RWL1-DF both perform close to the optimal
least-squares performance, RWL1-DF is much more robust to
the change in innovations sparsity, retaining an rMSE error
of less than 1.6% rMSE steady state error for up to 8-sparse
innovations. BPDN-DF, meanwhile, increases to 8.6% rMSE.

For the compressive video recovery, we take M = 0.25N
randomly subsampled noiselets from 200 consecutive frames
of the foreman video sequence1. We recover the video se-

1The foreman video sequence can be found at
http://www.hlevkin.com/TestVideo/foreman.yuv .
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Fig. 2. We recover 500-length, 20-sparse signals from M measurements
where we sweep M from 55 to 110. For smaller numbers of measurements,
RWL1-DF achieves a lower steady-state rMSE than BPDN-DF, and the time
independent BPDN and RWL1.
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Fig. 3. We sweep the average innovations sparsity from 2 to 10, keeping the
same model parameters as in Figure 2 and fixing the number of measurements
to M = 70. While both BPDN-DF and RWL1-DF perform comparably at
low innovations sparsity, the error from RWL1-DF remains low for higher
innovations sparsity (higher model mismatch).

quence using the dual-tree wavelet transform as the sparsity
basis [cite] and the following parameters: λ = 0.01 for BPDN,
λ0 = 0.001, τ = 0.05 and η = 0.1 for RWL1, λ = 0.01,
γ = 0.3 and p = 2 for BPDN-DF, and λ0 = 0.001, η = 0.2,
λ0ξ = 1 and (1+α)ξ = 0.4 for RWL1-DF. The recovery rMSE
of each frame (shown in Figure 4) shows that while BPDN-DF
can use dynamical information to enhance the recovery from
time-independent recovery, RWL1-DF achieves even lower
errors, typically staying below 2% rMSE.

V. CONCLUSIONS

In this work we show the benefits of utilizing the weight
parameters in the RWL1 algorithm for dynamic filtering of
sparse signals. The recovery performance of our reweighted `1
dynamic filtering algorithm, in both simulated experiments and
compressive recovery of video sequences, demonstrates im-
provement over time-independent recovery and simple norm-
regularized time dependent recovery. In particular our simula-
tions highlight a robustness of RWL1-DF to the innovations
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Fig. 4. Recovery of the foreman video sequence from compressive samples.

statistics, which can be particularly important in sparse signal
regimes where the innovations may be difficult to quantify.

As a note on the complexity of RWL1-DF, although we
have added significant a-priori information in RWL1-DF as
opposed to standard RWL1, the computational cost is essen-
tially unchanged. Even the number of reweighting steps seems
unchanged between the two algorithms. Recent advances in
homotopy methods for RWL1 algorithms could significantly
improve algorithmic speed [15]. Additionally, reweighted al-
gorithms can be written as continuous time systems [16], en-
abling the possibility of analog implementations in dedicated
hardware [17].
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