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Compressive sensing results have allowed accurate recon-
struction of highly undersampled signals by leveraging known
signal structure [1]. Recently, there has been a push to extend
these results into an area of great interest for a large number of
fields: the estimation of dynamically changing signals [2]–[5].
If known, or even partially known dynamics are transforming a
state, then past observations should be able to be incorporated
into the estimation process of a state at any given time in
order to increase the accuracy of the estimation. Typically a
dynamical state xn ∈ RN is assumed to evolve with some
approximately known dynamics fn(·) as

xn = fn(xn−1) + νn, (1)

where νn is called the innovations and can be interpreted as
the limitation of our knowledge of the system dynamics. Given
a set of linear measurements at each iteration,

yn = Gnxn + εn, (2)

where yn, εn ∈ RM are the measurements and measurement
error, respectively, we wish to estimate the underlying evolving
state. More specifically, we wish to recover the current state
at each time step as best as possible given all previous
measurements. In previous work [4], we explore a framework
in which propagating first order statistics and utilization of
appropriate `1 norms allow for accurate estimation when the
state, the innovations or both are sparse.

In least-squares based state estimation, however, higher order
statistics are propagated in order to obtain more accurate esti-
mates at each iteration. For instance in the case of the Kalman
filter, which arises when under assumptions of linearity in the
modeled dynamics and Gaussian statistics in the innovations
and measurement noise, a covariance matrix is propagated
along with the mean to obtain an optimal estimate. In this
work, we expand on the previously introduced framework in
order to include similar higher order statistics by introducing a
hierarchical model inspired by the reweighted `1 sparse infer-
ence method first proposed in [6]. We use previous information
in a way similar to [7] in that we are leveraging the weightings
Λ = diag(λi) in the optimization

x̂ = argmax
x
‖y −Gx‖22 + ‖Λx‖1 (3)

in order to propagate information about our prediction and our
confidence thereof of the next state. By using a Gamma prior
over each element of λ in a Bayesian setting, we determine
the expectation-maximization (EM) update equations in order
to determine xn and λn at each iteration to be

λt[i] =
2

|xt−1[i]|+ fn(xn−1)[i] + β
(4)

xt
n = argmin

x

[
‖yn −Gnx‖22 +

∑
i

λt[i]|x[i]|

]
(5)

where β is a small positive value which ensures stability in the
λ values and t indicates the EM iteration. The EM algorithm
run to convergence, which typically occurs for 10 ≤ t ≤ 30.

We show improvements on simulated data using the adap-
tation of the second order variables over similar first order
estimation programs in both the steady state relative mean
squared error (rMSE) and the robustness. For example at
sampling rates below CS recovery limits, steady state errors can
be reduced from 2.48% using first order methods to 0.67% with
the re-weighted model. Additionally, up to 30% of the signal
sparsity locations can be erroneous and the re-weighted model
continues to outperform both time-independent basis pursuit
de-noising as well as the first order models.
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