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Abstract—The growing use of hyperspectral imagery lead us
to seek automated algorithms for extracting useful information
about the scene. Recent work in sparse approximation has
shown that unsupervised learning techniques can use example
data to determine an efficient dictionary with few a priori
assumptions. We apply this model to sample hyperspectral data
and show that these techniques learn a dictionary that: 1)
contains a meaningful spectral decomposition for hyperspectral
imagery, 2) admit representations that are useful in determining
properties and classifying materials in the scene, and 3) forms
local approximations to the nonlinear manifold structure present
in the actual data.

Index Terms—E.4: Array Processing and Statistical Signal
Processing: Remote Sensing

I. INTRODUCTION

Hyperspectral imagers are airborne sensors that collect
ground reflectance measurements across many bands in the
electromagnetic spectrum. In hyperspectral imagery (HSI),
pixels represent the reflectance at a single ground location in
100+ contiguous spectral bands spanning wavelengths from
infrared to ultraviolet. This reflectance data is a function of
the spectral signatures of the materials present on the ground,
and the high spectral resolution makes HSI a useful modality
for determining terrain properties, including material clas-
sification, geologic feature identification, and environmental
monitoring. HSI is typically analyzed using “endmembers”,
a library of pure spectral signatures for component materials
that form a convex hull containing the measured data (e.g., see
the red vectors in Figure 1). Endmember analysis interprets
each pixel as a linear combination of endmember vectors, and
“unmixes” the material components of each pixel by using
a least-squares optimization to determine which endmember
vectors best represent the data pixel. In the absence of known
endmembers, a number of methods have been proposed to
determine endmembers, including expert identification (using
spectral libraries or ground truth data), the N-FINDR algorithm
(requiring “pure” pixels in the dataset) [1], or other iterative
approaches [2].

Recent advances have shown the advantages of using signal
models based on sparse decompositions. Sparsity models seek
to describe a noisy measurement vector x using a linear
combination of just a few elements from a (perhaps large)

dictionary set {φk}. These types of models have led to state-
of-the-art results in many signal and image processing algo-
rithms [3]. Specifically, sparsity models represent a measured
signal x with a noisy linear combination of elements from the
dictionary,

x =

M∑
k=1

φkak + ν, (1)

where the coefficients ak are inferred through minimizing a
least-squares cost function with a sparsity-inducing regulariza-
tion term (e.g., the `1 norm) [4] such as:

J =

∥∥∥∥∥x−
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k=1

φkak
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2

2

+ γ
∑
k

|ak|. (2)

In the model (1) and the cost function (2), ν is additive
Gaussian white noise and γ is a scalar parameter trading off
between sparsity and approximation accuracy.

Sparsity models appear especially appropriate for analyzing
HSI. The high spatial resolution of modern HSI means that it
is likely only a few materials will be present in any one pixel,
which leads to the belief that each measured pixel should be
well-approximated by just a few spectral signatures from a
dictionary. Specifically, in the above model the data vector x
(a single hyperspectral pixel) and the dictionary elements φk
would be functions of wavelength (λ). Some initial research
into sparsity models for spectral unmixing in HSI has shown
promising results [5]. Furthermore, the nature of the sparsity
model is to make make the information content of the image
explicit by using just a few meaningful dictionary elements
for each pixel (as opposed to PCA which represents each
pixel with a mixture of basic components), and we believe
this representation will be particularly useful for material
classification.

With the size of HSI continuing to grow, increased emphasis
is being placed on automated methods for analyzing these
images. In particular, without ground truth data or assurances
that there are “pure” pixels present for every material in the
scene, dictionaries to represent the HSI must be learned from
the spectrally mixed pixels in the scene. In this work, we
show three main results: 1) existing unsupervised learning



Fig. 1. Endmember analysis uses vectors that compose a convex cone around
the data. The red vectors indicate the endmembers for the manifold of data
indicated by the two dashed lines. Sparse encoding instead directly uses
the spectra along the manifold, indicated here by blue vectors) to linearly
approximate the manifold.

algorithms can learn meaningful spectral dictionaries for HSI
under a sparsity model, 2) these learned dictionaries admit
representations that are useful in determining properties and
classifying materials in the scene, and 3) this linear model
appears to form local approximations to the nonlinear manifold
structure present in the actual data. Preliminary results on
similar sparsity-based approaches [6] have shown that sparsity-
based models can indeed extract some characteristic material
signatures from HSI.

II. METHODS

We use the unsupervised learning algorithm first proposed
in [7] to learn two sets of dictionaries for the Smith Island
HSI (which contains a significant amount of ground truth
material labels)1. We learned one dictionary with 22 spectral
signatures (the number of known material classes in the ground
truth labels), and another with 44 spectral signatures. The
learning algorithm in [7] attempts to jointly minimize the
objective function in Equation (2) with respect to both the
coefficients, {ak}, and the dictionary, {φk}. This approach
has been successful in learning sparse dictionaries for many
types of synthetic and natural signals. For computational
tractability, this minimization is often performed alternately on
the coefficients and the dictionary elements. At each iteration
of the algorithm, we randomly selected a set of 300 pixels and

1This data was taken with a PROBE2 airborne sensor on October 18 2001,
and is generously provided to us by the lab of Charles Bachmann. More
details on the dataset can be found in [8].

(holding the dictionary constant) found the optimal coefficients
{ak} for each pixel2. Once the coefficients are found, we
adjusted the dictionary {φk} by a gradient step of size µ using
the update rule

φl = φl + µ

〈
al

(
x−

M∑
k=1

φkak

)〉
, (3)

where 〈〉̇ indicates the average over all the randomly selected
pixels. Minimizing Equation (2) with respect to {φk} can re-
sult in a degenerate solution where the norms of the dictionary
elements are very large, allowing for near-zero coefficients. To
prevent this solution, we restrict each φk to lie the unit circle.
Both dictionaries are learned with γ = 0.02, and the process is
allowed to continue until the dictionary elements are stabilized.

We applied Support Vector Machines (SVMs) to perform
supervised classification on the data to demonstrate the utility
of the sparse coefficient representations using the learned dic-
tionaries. SVMs were chosen due to their widespread use as a
supervised learning algorithm [10]. A total of 2700 pixels from
22 distinct classes were available in the Smith Island dataset.
Of these ground truth labels, 70% of the data available for
each class is used for training, and the other 30% reserved for
testing. We use the multiclass C-SVM classification algorithm
implementation available in the libsvm package [11] to
classify all 22 classes simultaneously. The main parameter of
the C-SVM algorithm (C) controls the potential complexity
of the classifier by changing the cost of the wrongly classified
points in the training process. We performed each classification
test over a range of C values to locate value which yield the
best possible performance. For each classification test using a
different C value in the C-SVM, we used an average of 10
trials to calculate the performance.

III. RESULTS

To test the learned dictionaries, we compare the resulting
dictionary elements to known material spectra to see if compo-
nent materials were in fact learned as predicted by the model.
As shown in Figure 2, even with no a priori information be-
yond a sparsity model, the learned spectra examples shown are
a good match the spectral signatures of known materials in the
image. A number of significantly different spectra are learned,
such as “Pine trees”, “Water”, “Mud” and “Seaoats”, as well as
very similar spectra, such as “Water” and “Submerged Net” or
“Pine trees” and “Iva”. Even within classes, small subtleties
in the material signatures are captured in the learning. For
example, Figure 3 shows that two similar dictionary elements
from the 22 element dictionary (shown in the lower half of
the image) capture the different characteristics of shallow and
deep water. The heat maps in the upper part of the image
show the intensity of the corresponding coefficients throughout
the image. These heat maps demonstrate that although the
two dictionary elements are very similar, the pixels with high
magnitudes for the corresponding coefficients are clustered,

2We used the specialized `1 optimization package l1_ls [9] to find the
optimal coefficients.



Fig. 2. Example labeled spectra for the materials in the Smith Island data
set and the corresponding closest learned dictionary element (DE) for each.

and more importantly, clustered in different parts of the image.
If two coefficients were always active concurrently, they would
be indicating the same material and the model would be using
two spectra to represent the same material, which conflicts
with the model’s sparsity assumption. For example, dictionary
element #20 in Figure 3 clusters in areas with shallow water,
such as around the edge of the island and at sand banks.
Dictionary element #19, however, is dominant in most of the
deeper water regions, but does not show up by land or in
shallow water areas.

Hyperspectral data is nonlinear in nature [12]. Even within
a single material class, the image manifold can deviate from
a linear model, as shown in Figure 4 for a subset of water
pixels from the Smith Island data. It would thus be instructive
to compare how the learned dictionaries in this linear model
represent these nonlinearities. Figure 4 shows a known nonlin-
ear portion of the data manifold corresponding to bands 14, 29
and 70 (0.6278, 0.8572 and 1.4962 µm) for water pixels [12],
and the dictionary elements used to represent that segment of
the manifold. The light blue points represent pixels from a
portion of the image including a portion of a sand bar, while
the multicolored vectors correspond to the dictionary elements
from the 44 element dictionary, shown below the scatter plot
in Figure 4. The placement of dictionary elements 10, 4, and
26 clearly outline the main manifold curve, while numbers
20 and 22 along with 4 and 10 approximate the cluster
of data centered around the end closer to the origin. Thus,
although the data actually lies on a nonlinear manifold [12],
the learned spectra represent tile this nonlinear space with local
approximations.

While the learned spectra can be shown to match known
material spectra, a stronger indication of material presence

Fig. 3. Subtle differences such as water depth are captured by the learned
dictionary elements (DEs), shown in the bottom panels. A low second peak,
shown in red, indicates deeper water (left) while a higher second peak
indicates shallow areas, such as sandbanks and water closer to shore (right).
The top panels show the locations where these dictionary elements are used,
corresponding to features such as sandbars.

Fig. 4. Manifold structure of water pixels in three spectral bands with the
corresponding dictionary elements approximating the manifold (top), along
with the full spectra of the dictionary elements in the same color (bottom).

as well as environmental features in the image would be
the consistent, meaningful changes in the dictionary coeffi-
cients between neighboring pixels. The heat maps in Figure 3
show the presence of various coefficients are fairly consistent
(nearby pixels are similarly activated with respect to a specific
coefficient). To further test the consistency and to observe the
changes over the whole set of coefficients, the decompositions
from a row of 21 consecutive pixels in the top row of the
Smith Island image were analyzed. The decomposition of



Fig. 5. Progression of the inferred coefficients from water to mud. (Top)
The progression through a row of 21 consecutive pixels is shown, with the
coefficient numbers on the y-axis, pixel number in the progression on the
x-axis, and brightness indicating the level of activation for that coefficient at
that pixel. (Bottom) The spectra for every 7th pixel is shown, along with the
most active dictionary elements. From pixel 1 to 7 the water depth slowly
decreases and turns to mud. From pixel 7 to 14 mud stays consistent and
from pixel 14 to 21 the mud gives way to shallow water again.

these pixels is shown in Figure 5. This decomposition shows
the progression (from left to right), starting at water pixels,
progressing to mud and returning back to a mud/water mixture.
The consistency of the active coefficients inferred across the
progression strongly suggests that dictionary element #25 is
representative of a material found in pixels 4-19. Additionally,
the consistent transfer both of active coefficients from 4-
10 and then again at pixels 18-21 indicate a change in
material from one consistently active coefficient to another.
To view the behavior of the progression in more detail, the
actual spectrum, as well as the 2-3 most prominent dictionary
elements in the decomposition are shown for every 7th pixel.
The decompositions at the 7th and 21st pixels show the mid-
points between two distinct spectral shapes, and the learning
algorithm correctly results in a decomposition of the pixels
into two distinct spectra rather than one combined spectrum.

For most practical applications, classifying the materials
on the ground, either as multiclass material classification or
anomaly detection, is one of the prime objectives of HSI.
Using the ground truth labels for 22 classes of materials in
the Smith Island dataset, we have also explored the utility
of the learned dictionaries for material classification. If the
learned dictionary spectra are truly indicative of the materials
present, then the largest coefficient would be an informative
quantity in a classification setting. Figure 6 shows the results
of a simple vector quantization scheme where each pixel is
classified according to the dictionary element with the largest
coefficient. Even this simplistic classification distinctly shows
features of the terrain such as locations of sandbanks and tree

Fig. 6. Vector Quantization classification using only the largest active
dictionary element for each pixel. Distinct shapes indicative of known ground
truth, such as sandbars and tree lines are clearly visible.

lines. As can be seen in the center-left portion of the image,
a total of three apparent depths of water (illustrated by the
colors blue, red and yellow) can be easily identified.

To test the data on a more widely used classification tech-
nique, we tested the performance of the inferred coefficients
for the learned dictionaries in an SVM classifier (linear kernel)
using the set of label pixels from the image. For comparison,
we also selected two sets of exemplar data (data chosen from
the ground truth to be tested) with comparable sizes (22
and 44 elements), each exemplar dictionary consisting of the
same number of spectra from each class (1 and 2 spectra per
class respectively). The coefficients for these dictionaries are
calculated the same way as the coefficients for the learned
dictionaries, using l1_ls with γ = 0.02. Additionally,
classification was performed on the raw data as well as
the Principal Component Analysis (PCA) decomposition with
M = 4 principal components (99.9% of the signal energy).
Figure 7 shows the results of supervised classification using
a linear kernel with C-SVM with the complexity parameter
C ranging from 10−1 to 104. We compared two important
properties: the classification performance (measured by the
percent of spectra misclassified) and the time for classification
to be accomplished. The time for the classification represents
the complexity of the classifier, and is proportional to the
number of support vectors as well as the dimension of the
data. As C increases, the classification performance for all
representations of the data increases and the number of sup-
port vectors, therefore the classification time, decreases. Past
large enough values of C, the classification performance and



Fig. 7. Support Vector Machine average classification performance using
linear kernels, plotting classification error versus classification time. Demixing
with either the 22 element dictionary and the 44 element dictionary perform
better than demixing with exemplar data (samples drawn from labeled data
classes). Performance is comparable with classification on the raw data, but
with a lower classification time.

classification complexity plateaued, resulting in the endpoints
in Figure 7. While this endpoint was reached at different
values of C for each representation of the data, these points
are the indicators of the true potential of classification using
that representation. Figure 7 shows that classification using the
first four principal components is by far the fastest in terms of
classification time, but has almost three times the classification
error using either of the the learned dictionary representations.
Using the exemplar dictionaries yields better classification
results than PCA, but also a higher rate of misclassified
pixels than the learned dictionaries. The classification time,
though, for a given percent error, is less for the exemplar
dictionaries as opposed to the learned dictionaries of the
same size, indicating that the learned dictionaries use less
support vectors. In comparison with classification over the
raw data, the learned dictionaries using 44 and 22 elements
perform material classification almost as well in terms of
percent misclassified pixels. The classifiers, however, are much
simpler for the learned dictionaries (the support vectors are
lower dimensional), resulting in faster classification times for
significantly better classification rates than achievable using
either PCA or the exemplar dictionaries.

IV. CONCLUSIONS

The results from the learned dictionaries indicate that unsu-
pervised learning of sparse hyperspectral dictionaries can be a
useful tool for analyzing HSI. The ability to differentiate, for
example, different depths of water, or to locate basic terrain
information such as tree lines with simplistic operations could
be useful for navigation in areas with no previous ground
exploration required. Even in terrain with some ground truth
available, the classification performance indicates that materi-

als can be found with higher confidence using the learned
dictionary with supervised learning rather than using only
the ground truth directly in the same supervised classification
setting. Due to the dimensionality reduction Such classification
can also be accomplished faster than using the raw data.
These aspects of classification using the learned dictionary
in combination with the autonomous nature of the learning
algorithm makes for an ideal analysis tool for large geological
surveys with little or no ground truth.
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