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Abstract—While current inference methods can decompose
audio signals, they require the entire signal upfront and are
therefore ill-suited for real-time applications requiring causal
processing. We propose a neurally-inspired, causal, sparse infer-
ence scheme based on the Locally Competitive Algorithm (LCA)
[1] over a temporal-spectral neighborhood. We demonstrate that
this causal inference scheme can achieve lower sparsity levels and
better signal fidelity than current filter and threshold approaches.
Additionally, for some regimes, the sparsity level approaches
those of Matching Pursuit while still maintaining signal integrity.

Index Terms—Locally Competitive Algorithm (LCA), causal
sparse encoding, audio processing, convolutional model

I. INTRODUCTION

Sparse coding models have recently led to state-of-the-art
signal and image processing algorithms in a wide variety of
situations [2]. These models treat a signal as a linear combina-
tion of elements from a (potentially overcomplete) dictionary,
and the goal is to find a signal approximation using as few of
these dictionary elements as possible. Recently, sparse coding
has been applied to audio signals in a convolutional model,
where the dictionary is composed of time shifted versions of
a basic set of kernels, and the linear generative model is given
by

x =
∑

i∈[1,N ]

∑
m

smi φ(n− τmi ). (1)

In this model the audio signal, x, is a summation of a fixed
set of basis elements, {φi}, scaled by a set of weights {smi },
and shifted across m possible time locations by {τmi }. Current
approaches to finding the optimal set of coefficients treat the
audio signal as a single large block of data, therefore requiring
that the whole signal be available at once. Thus, while sparse
encoding is currently a useful model, real-time applications
are not possible unless a causal algorithm with low-delay is
developed to infer the coefficients.

Sparse coding has also been shown to correlate well
with neural encoding schemes. For example, Olshausen and
Field [3] have used unsupervised learning approaches to show
that the optimal dictionary elements for image encoding under
a sparsity model match well with measured receptive fields
in the visual cortex. Likewise for the auditory system, Smith
and Lewicki [4] have used a similar approach to show that

This work is funded by NSF grants CCF-0905346 and CCF-0830456.

optimal dictionary elements in a convolutional model such
as (1) correspond with measured auditory receptive fields
(often modeled as gammachirp functions [5], [6]). Because
these neural systems have shown evidence of using sparse
approximation and they operate as causal real-time systems,
we look to them as inspiration for developing a system that
can be used in engineering applications.

Currently, two main approaches to calculating sparse co-
efficients for audio signals exist: (1) global methods treating
the signal as a large block and applying algorithms such as
Matching Pursuit (MP) and (2) a causal Filter and Threshold
(FT) method (such as that proposed by Smith and Lewicki [4],
[7]) that treats the signal as a data stream and tries to induce
sparsity.

A. Matching Pursuit

The problem of decomposing a vector x into a sparse set of
coefficients is a well known problem in the signal processing
community. The optimal coefficients would ideally be found
by performing the optimization

ŝ = arg min ‖s‖0 s.t. ‖x− Φ̃s‖22 < ε, (2)

where Φ̃ is defined as the full basis composed of all of the
possible shifts of the basis vectors {φi}, and the pseudo-norm
‖s‖0 counts the number of non-zeros. In the reformulation
used for Equation (2), the location of each element of s
indicates which (i,m) pair that value corresponds to, thus
indicating its shift as well.

The optimization problem in (2) is combinatorial in nature,
meaning that to find the true minimum, every possible combi-
nation of basis elements must be tried. Matching Pursuit (MP)
is a greedy algorithm designed to approximate the true solution
[8]. In the MP algorithm, the residual vector r0 is initialized
to the signal vector x. At each iteration, the inner product
between each residual basis element and the residual vector,
ai,n = 〈φi, rn〉, is taken. Of these, the maximum inner product
is found, and the set of coefficients is updated to include a new
coefficient based on that maximum value. The residual is then
updated by removing that portion of the signal. Each iteration
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Fig. 1: Schematic illustration of the filter and threshold (FT)
algorithm. Local peak detection on the inner products of
three consecutive sections of the input signal yield active
coefficients, which are recorded in the “spikegram”.

of the algorithm can thus be summarized as

a = Φ̃T rn (3)
imax,n = arg max a (4)

s(i) = s(i) + a(i) (5)
rn−1 = rn − a(i)φ̃i. (6)

Equations (3) - (6) are repeated until the stopping criteria is
met, which may be an upper bound on ‖rn‖22, a lower bound
on max a, or the support of s, ‖s‖0.

B. Filter and Threshold

Although the MP algorithm (along with other sparse ap-
proximation algorithms applied to the block signal, including
many algorithms related to MP) yield a sparse decomposition
of the audio signal x, the process requires knowledge of
the entire signal and is therefore non-causal. Thus MP is
ill-suited for real-time applications where future samples are
unknown. Smith and Lewicki [4] proposed a simple, neurally-
inspired causal method that treats the projections onto the
various basis elements as an instant-by-instant projection (i.e.
a filtering operation), rather than finding the optimal time shift
for a dictionary element across the entire audio signal. This
approach treats each filter as a neuron which responds to
a specific basis element. Since neurons only respond when
a critical threshold is reached, the outputs of the filters are
thresholded to some value, λ, which would also enforce a
level of sparsity (Figure 1).

Although the thresholding operation attempts to sparsify the
output, the FT algorithm does not yield sparse results. One
of the hindrances of this scheme is its tendency to have the
outputs of each filter be consecutively above threshold for long
stretches of time due to the correlations between successive

shifts of a dictionary element (particularly those with signif-
icant low-frequency content). To further sparsify the outputs,
Smith and Lewicki recommend a peak detection algorithm
to choose a single value for each of these occurrences [4].
Since most peak detection algorithms are not causal, a local
peak detection algorithm can be implemented by using a short
buffer.

C. Sparse and Causal Scheme

The two algorithms discussed above (MP and FT) are each
suboptimal. MP yields sparse results, yet is non-causal. The
FT algorithm is causal but does not make sufficient use of the
signal statistics, resulting in less sparse representations. We
propose a neurally-inspired model for causal sparse coefficient
recovery based on an alternate scheme of recovering sparse
coefficients using a Locally Competitive Algorithm [1] (LCA).
The LCA is a dynamical system that solves a family of
sparse approximation problems using continuous-time nodes
and analog computational primitives, making it amenable to
implementation in an analog circuit that is fast and low-
power compared to digital counterparts. Compared to the FT
algorithm, the LCA accounts for both the sparsity measure as
well as signal fidelity, which makes the LCA a better candidate
for decomposing longer signals into a block-based inference
problem with low delay.

II. THE CAUSAL LCA SCHEME

A. System Architecture

Although the FT scheme provides a method for causal
decompositions of audio signals, the results are not particularly
sparse. Despite the added peak detection step, the fundamental
problem is that successive shifts of the basis functions in time
are highly correlated, producing a dictionary with very high
coherence. In order to further sparsify the output coefficients,
a method which takes a larger temporal neighborhood, as
well as a spectral neighborhood, into account needs to be
implemented. To get a sense of the required time-frequency
neighborhood, the strengths of the inner products between
the coefficients and their shifts were considered by observing
the auto- and cross-correlation functions. Figure 2 shows
two examples, Rφ3,φ4(m) and Rφ6,φ4(m), where φ3, φ4 and
φ6 represent gammachirp functions centered at 257.91Hz,
363.36Hz, and 647.74Hz, respectively. The correlations sug-
gest that the most significant inner products exits within a
small time-frequency window about the basis function. Basis
functions either too distant in time or in frequency were much
less correlated, if correlated at all.

A graphical model which shows the connections between
correlated basis functions of various shifts and frequencies is
shown in Figure 3. In this model, the weights along the lines
which connect the nodes are the inner products between the
corresponding basis functions.

The architecture shown in Figure 3 is similar to the archi-
tecture of the Locally Competitive Algorithm (LCA) [1]. The
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Fig. 2: Sample correlation functions between gammachirp
basis elements. Basis functions φ3, φ4 and φ6 are shown on
the left. The cross-correlations, Rφ3,φ4 and Rφ6,φ4 , are plotted
to the same scale on the right.
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Fig. 3: Graphical model of basis correlations. Each node
represents a basis function at a specific time and frequency.
Connections are weighted by the inner product of the corre-
sponding basis functions.

LCA is a neurally-inspired method which uses precisely the
same weights as suggested above for the graphical model in
Figure 3 to obtain sparse coefficients for linearly generative
models. In the LCA algorithm, each “neuron” represents a
basis function and is modeled as a leaky integrator with a
thresholded output. The complete dynamics of the system at
each node, i, are described in terms of the internal variable,
ui, as

zi =
∑
j 6=i

〈φi, φj〉aj (7)

u̇i = −1
τ
ui +

1
τ

(bi − zi) (8)

ai = Tλ(ui), (9)

where ai is the output of the corresponding neuron, given by
the thresholding operation Tλ on ui, bi is a forcing function
given by the inner product 〈φi,x〉, and zi is the inhibition on
the neuron by the other neurons, wherein each inhibition term
is proportional to the inner product between the representative
basis functions. Thus the connections in Figure 3 can be
treated as inhibitory connections. By allowing the internal

Ke
rn

el
 p

ea
k 

fr
eq

ue
nc

y

Time

Fig. 4: Interdependencies between basis functions in a neural
architecture. Coefficients for shifted bases still in the buffer
remain undetermined at time n. Coefficients written recently
continue to inhibit coefficients in the buffer, shown by the red
and blue nodes.

variables to progress by the dynamics of Equations (7) - (9),
a sparse representation can be found.

We propose extending the LCA to a causal scheme by
incorporating a relevant temporal-spectral neighborhood which
is identified by the correlation functions. In such a causal
scheme, the last L outputs of a filtering operation with each
basis element is buffered to form the significant neighborhood,
as depicted in Figure 4. At each iteration the N new values
coming from the filter bank (of N filters) are shifted into the
buffer, and the LCA is run on the buffer. The coefficients at
the output of the LCA which have been in the buffer longest
(and have had the longest time to stabilize) are committed then
to the decomposition as they leave the buffer. New values are
shifted into the buffer again, and the process repeats.

Since the coefficients which have recently been committed
still have significant correlations to coefficients which remain
in the buffer, as shown in Figure 4, this causal scheme
must take into account these additional correlations. Thus,
the dynamics at each time step are governed by the standard
LCA dynamics with a second set of inhibitions from recently
committed coefficients.

B. Causal System Dynamics

The dynamics for the causal LCA (CLCA) scheme follow
from the LCA dynamics. The buffer, made up of the set of
bi, is saved as the matrix B ∈ RNxL, consisting of the past
L outputs of each of the N filters in the filter bank. Thus
the elements of B are representative of the forcing values in
Equation (8): Bi,j = bi(n+ j) = 〈φi, ~xM (n+ j)〉, where ~xM
is the truncated section of x.

In order to fit the LCA architecture, the forcing vector b̃ is
defined as the concatenation of the transposed rows of B. The
effective basis for the LCA operation is then a concatenation
of the shifted basis elements. The modified dynamics for the



causal implementation of the LCA are then given by

z̃i(n) =
∑
j 6=i

L−1∑
m=0

〈φi(n), φj(n+m)〉aj(n−m)

+
N∑
j=1

L+M−1∑
m=L−1

〈φi(n), φj(n+m)〉aj(n−m) (10)

˙̃ui(n) = −1
τ
ũi(n) +

1
τ

(
b̃i(n)− z̃i(n)

)
(11)

ãi(n) = Tλ(ũi(n)), (12)

where the index i represents the basis function number, n
represents the current time step, and M represents the range of
feedback inhibitions in samples. As opposed to the inhibition
given in Equation (7), the inhibition z̃i(n) in Equation (10) is
composed of two sets of terms. The first set of terms is iden-
tical to Equation (7) and represents the inhibitions internal to
the buffer. The second term represents the feedback inhibitions
from the coefficients written in the past M time steps. Since
the coefficients ai(n−m) over m ∈ [L+M − 1, L− 1] are
determined, this term is constant for every time step.

At steady state, the matrix A, composed of the ãi for each
time step j, is the coefficient matrix corresponding to B. The
algorithm saves the first column of A, which corresponds to
the earliest basis elements represented in the buffer, to the final
decomposition. The remaining coefficients are shifted by one,
and the new column of A is initialized to zero for the LCA
at the next time step.

III. METHODS

In order to evaluate the performance for CLCA relative
to Matching Pursuit and filter-and-threshold, we processed a
speech sample with each of the three inference algorithms.
We used the test signal “aba”, with a sampling frequency of
16kHz, from the database included in [9] and bandpass filtered
it from 100Hz to 6kHz. We constructed the basis set of 16
gammachirp functions logarithmically spaced from 100 Hz to
6kHz using Irino’s dynamic compressive gammachirp (dcGC)
filterbank software [5]. The parameters used were specified by
Park [10] and inspired by Irino and Patterson [11]. Specifically,
each gammachirp function was determined by the following
equations.

gfc
(t) = t3e−2π·1.14·B(fc) cos (2πfc · t+ 0.979 · ln t), (13)

where B(fc) is the Equivalent Rectangular Bandwidth (ERB)
of the center frequency, fc,

B(fc) = 0.1039fc + 24.7. (14)

Since Equations (10) - (12) represent a continuous-time
dynamical system, we implemented the system using a for-
ward Euler’s approximation. The evolution of ũi(n) can be
approximated by

ũki (n) =
(

1− ∆
τ

)
ũk−1
i (n) +

∆
τ

(
b̃i(n)− z̃k−1

i (n)
)
,

(15)

where k represents the iteration number and

z̃k−1
i (n) = z̃i(n)|ãi(n)=ãk−1

i
(n), (16)

is the inhibition calculated with the coefficients from iteration
k − 1. As the simulated system is running, we gradually
lower λ from a high starting value to the final desired value
according to an exponential decay. This type of continuation
scheme has shown better convergence properties in many
similar systems [12]. We use both the the soft-thresholding
function, defined by

Tλ(u) =

u− λ if u > λ
u+ λ if u < −λ

0 otherwise
, (17)

as well as the hard-thresholding function, defined by

Tλ(u) =

u if u > λ
u if u < −λ
0 otherwise

. (18)

Note that the soft-thresholding function minimizes the `1
norm of the coefficients and the hard-thresholding function
minimizes the `0 norm of the coefficients, both subject to a
fidelity constraint [1]. We compared our proposed approach
to MP, implemented in the highly optimized Matching Pursuit
Toolkit [13]1.

For the parameter selections, we chose conservative param-
eters in order to encourage full convergence. For the hard-
thresholding we used ∆/τ = 0.03 with 4000 iterations and
a decay on λ of 0.998 from an initial λ of 1. For the
soft-thresholding we used a smaller ∆/τ = 0.02 with 10k
iterations and the same decay on λ, but from an initial λ of 10.
The buffer used in both cases was 10ms, which at a sampling
rate of 16kHz is 160 samples.

Finally, we implemented the FT algorithm, as depicted by
Figure 1, using local peak detection with a buffer of length
three. We chose to accept a coefficient when the middle value
in the buffer was greater than threshold, as well as greater than
both its neighbors. FT is inherently poor at accurately repre-
senting signal strength since it ignores correlations between
active coefficients. Therefore, we retroactively scaled signals
during reconstruction by a number that produced the best SNR
possible for the given coefficients. It is important to note that
the scaling factor is not known a-priori and is not consistent
across signals.

IV. RESULTS

A. One-sparse signals

We first test the CLCA’s ability to recover one-sparse signals
by running the algorithm on synthetic signals containing
only one dictionary element. While the CLCA is able to
recover the correct one-sparse decomposition for dictionary
elements with peak frequencies at or above about 273 Hz,
the lowest dictionary elements yield less ideal decompositions.
Specifically, the CLCA for our example cases result in a higher

1http://mptk.irisa.fr/



sparsity (18-50 coefficients) with signal recovery around 22 dB
SNR.

The CLCA’s recovery of one-sparse signals demonstrates
that the CLCA retains the LCA’s sparsity seeking property.
The inability of the CLCA algorithm to recover the one-sparse
solution for very low frequency dictionary elements, however,
indicates that the high dictionary coherence is hindering the
convergence of the algorithm to a significant extent.

B. Speech samples

We show the time waveform of the signal “aba” in Figure
5a and its corresponding spectrogram in Figure 5b. In Figures
5c-e, we have plotted the resulting “spikegrams” for each
algorithm, where each circle corresponds to a coefficient in the
sparse approximation. The size and color indicate coefficient
magnitude, where large, dark-colored circles correspond to a
high magnitude and small, light-colored circles correspond to
a low magnitude. The scales of the circle sizes and colors
are consistent across plots with the range of values falling
between 0.05 and 1.7. Figure 5d, corresponding to the CLCA
simulation using hard thresholding, depicts the resulting de-
composition using the 10ms buffer. We specified a stopping
criterion of 11.515dB signal-to-noise ratio (SNR) for MP,
which matches the resulting SNR of the CLCA decomposition,
and implemented the FT algorithm using local peak detection
with a buffer of length three and a threshold of 0.05.

With 676 coefficients, inference using the CLCA returned an
SNR of 11.515dB. Conversely, at 11.515 dB SNR, inference
using Matching Pursuit returned 461 coefficients. Finally, in-
ference using the filter and threshold algorithm returned 1835
coefficients with an SNR of 5.203dB when the reconstructed
signal was scaled by 0.215 (-9.758dB without scaling). These
results demonstrate the CLCA’s ability to outperform the
current causal method, FT, in terms of both sparsity and signal
integrity. The CLCA, however, uses more coefficients than MP,
demonstrating the cost of performing computations causally.

We measure the total performance in terms of the relation-
ship between sparsity and signal integrity. We change the main
parameter for each method (target SNR in MP and λ in the
CLCA and FT) to obtain a range of possible fidelities for each
algorithm. Figure 6 shows the parametric rate-distortion curves
comparing output SNR in dB and sparsity level. While MP
performes best overall, the CLCA using the hard-thresholding
scheme matches the MP performance up to approximately
12dB SNR. The hard-thresholding scheme yielded unstable
results for lower values of λ, limiting the feasible SNR
range. Conversely, we were able to reach an SNR of 28.7dB
using the soft-thresholding scheme with λ = 0.0025. Higher
signal integrity may be possible with the appropriate parameter
selection.

By examining the rate-distorion curves in Figure 6, it is clear
that for our test signal, the CLCA can clearly outperform the
FT algorithm by improving both sparsity and signal integrity.
The hard-thresholding function allows the CLCA to obtain

Fig. 5: (a) Sample audio file of a voice saying “aba” and (b)
the corresponding power spectrum. Spikegrams for (c) MP, (d)
CLCA, and (e) filter and threshold

Fig. 6: Rate-distortion curves show the relationship between
sparsity levels and signal SNR for various parameter choices.

very low sparsity levels for low SNR levels, while the soft-
thresholding function allows the CLCA to obtain higher SNR
levels at the cost of sparisty. While not strictly real-time, the



algorithm is causal and runs with only a 10ms buffer.
These preliminary results suggest that with appropriate

parameter selection, the CLCA could provide a near real-
time solution to the sparse coding problem. While digital
simulations of the CLCA are quite long, an analog implemen-
tation would be able to perform the equivalent computations
much faster. With the parameters used to generate the data
for Figure 6, each buffered LCA takes approximately 120
time constants. Therefore, with a system using a 100ns time-
constant, the total time per buffered LCA would be 20µs.
With a 16kHz sampling rate, as with the “aba” signal, the
sample period is 62.5µs, which leaves sufficient time for LCA
convergence. Thus, the amount of time taken for the CLCA to
run would be approximately the duration of the original audio
signal.

V. CONCLUSION

Preliminary results for the CLCA algorithm demonstrate
that it is a possible causal inference scheme that can achieve
relatively low sparsity levels in comparison to current methods.
The results shown here are digital implementations, neces-
sitating high simulation times. Thus analysis of only one
speech signal is shown. A full analysis would include many
speech signals in order to understand the scope of the CLCA
algorithm.

The varying results we observe with different parameter
selections indicate that we are not currently achieving proper
convergence for each individual LCA. We need to more fully
understand the impact of the coherence between dictionary
elements in a convolutional model in order to choose LCA
parameters which guarantee convergence. More informed pa-
rameter choice may improve the overall CLCA performance.
Additionally, we need to quantify the detrements of the
buffering scheme, irrespective of the inference algorithm used
at each time step.

If future simulations are consistent with the preliminary
results, the CLCA could provide a near real-time inference
scheme. An analog implementation of this algorithm would
be able to run real-time encoding of speech signals, making
the CLCA a useful front-end for various real-time applications.
Furthermore, the generality of the algorithm can extend to any
time-series analysis that can be modeled by a similar convolu-
tional model. Although there is much room for improvement,
we are encouraged by these preliminary results.
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