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Abstract

The sparse coding hypothesis has generated significant interest in the computational
and theoretical neuroscience communities, but there remain open questions about the
exact quantitative form of the sparsity penalty and the implementation of such a coding
rule in neurally plausible architectures. The main contribution of this work is to show
that a wide variety of sparsity-based probabilistic inference problems proposed in the
signal processing and statistics literatures can be implemented exactly in the common
network architecture known as the Locally Competitive Algorithm (LCA). Among the
cost functions we examine are approximate `p norms (0 ≤ p ≤ 2), modified `p-norms,
block-`1 norms, and re-weighted algorithms. Of particular interest is that we show
significantly increased performance in re-weighted `1 algorithms by inferring all pa-
rameters jointly in a dynamical system rather than using an iterative approach native to
digital computational architectures.

1 Introduction
————————-

New experimental approaches over the past decades have provided a closer look
at how sensory nervous systems such as the visual cortex process information about
their environment. Over this time it has become increasingly evident that the canon-
ical linear-nonlinear model where cells encode visual information via linear filtering
followed by a nonlinearity (e.g., thresholding and saturation) is inadequate to describe
the complex processing performed by sensory cortex. For example, this type of linear-
nonlinear model does not capture the rich variety of nonlinear response properties and
contextual modulations observed in V1 (Seriès et al., 2003).



Many theoretical neuroscientists have postulated high level coding and computa-
tional principles for sensory cortex to attempt to further our understanding of these sys-
tems. In many cases, these proposals are based generally around probabilistic Bayesian
inference (Doya, 2007) due to the natural fit with ecological goals and evidence from
perceptual tasks in humans (Battaglia et al., 2003; Hürlimann et al., 2002). Many other
researchers have postulated complimentary models based on the ideas of efficient cod-
ing where information is encoded by removing redundant aspects of the stimulus. A
wide variety of interesting models have appeared related to this broad principle of effi-
cient coding, with selected examples including models using predictive coding (Rao &
Ballard, 1999; Spratling, 2011), divisive normalization (Schwartz & Simoncelli, 2001),
and directly encoding statistical variations (Karklin & Lewicki, 2008; Coen-Cagli et al.,
2012).

The sparse coding hypothesis is one interpretation of efficient coding that has gener-
ated significant interest in the computational and theoretical neuroscience communities.
In this model, a population of cells performs Bayesian inference to determine the en-
vironmental causes of a stimulus, with a goal of using as few simultaneously active
units in the encoding as possible. Distributed sparse neural codes have several poten-
tial benefits over dense linear codes, including explicit information representation and
easy decodability at higher processing stages (Olshausen & Field, 2004), metabolic
efficiency (due to the the significant cost of producing and transmitting action poten-
tials (Lennie, 2003)), and increased capacity of associative and sequence memory mod-
els (Baum et al., 1988; Charles et al., 2012). The interest in the sparse coding model
was originally generated when it was shown that this simple principle (combined with
the statistics of natural images) is sufficient to explain the emergence of V1 receptive
field shapes both qualitatively (Olshausen & Field, 1996) and quantitatively (Rehn &
Sommer, 2007). More recently, electrophysiology experiments report results consistent
with sparse coding (Haider et al., 2010; Vinje & Gallant, 2002), and simulation results
have demonstrated that the sparse coding model can account for a wide variety of non-
linear response properties (called nonclassical receptive field effects) reported in single
cells and population studies of V1 (Zhu & Rozell, 2012).

Despite this interest, there are many open fundamental questions related to the
sparse coding model. First, what exactly is the proper notion of sparsity to use dur-
ing inference? The original work in the computational neuroscience literature proposed
several potential sparsity-inducing cost functions (Olshausen & Field, 1996), and recent
work (motivated by strong theoretical results in the signal processing and applied math-
ematics communities) has seen people gravitate toward the `1 norm. While the main
qualitative results appear to be relatively robust to the detailed choice of the sparsity-
inducing cost function, the broader signal processing and statistics communities have
proposed several alternative cost functions that have appealing computational or statisti-
cal properties and may be valuable alternatives. Second, how would such a coding prin-
ciple be implemented in biologically plausible computational architectures? The com-
putation necessary to implement an inference process with a sparsity penalty amounts
to solving a non-smooth optimization problem that is notoriously challenging to solve
(e.g., many gradient based methods are wildly inefficient due to the non-smooth nature
of the objective). Recent theoretical work has demonstrated several network architec-
tures that can efficiently compute sparse coefficients (Rehn & Sommer, 2007; Rozell
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et al., 2010; Zylberberg et al., 2011; Perrinet et al., 2004). Interestingly, the sparse
coding problem has become very prominent in modern signal processing (e.g., for use
in inverse problems (Elad et al., 2010), computer vision (Wright et al., 2010), etc.),
and there is also increasing interest in leveraging the computational benefits of analog
neuromorphic architectures for these problems (Shapero et al., 2012a,b).

The main contribution of this work is to show that a wide variety of sparsity-based
probabilistic inference problems can be implemented exactly in the common network
architecture known as the Locally Competitive Algorithm (LCA) (Rozell et al., 2010).
The LCA is a type of Hopfield network that is specifically designed to incorporate
nonlinear thresholding elements that make it particularly efficient for solving the non-
smooth optimization problems necessary for sparse coding. In particular, we examine
sparsity-based approaches described in the recent statistics and signal processing liter-
ature to show that many proposed signal models based on sparsity principles can be
implemented efficiently in this common neural architecture. Among the cost functions
we examine are approximate `p norms (0 ≤ p ≤ 1), modified `p-norms that combine de-
sirable properties of different statistical models, block-`1 norms for use in hierarchical
models that impose correlations among the active variables, and re-weighted algorithms
that use a hierarchical probabilistic model to achieve more efficient encodings. Of par-
ticular interest is that we show significantly increased performance in re-weighted `1
algorithms by inferring all parameters jointly in a dynamical system rather than using
an iterative approach native to digital computational architectures. Preliminary results
related to this work were reported in (Rozell & Garrigues, 2010).

2 Background and related work

2.1 Sparse Coding
In the sparse coding problem, we use probabilistic inference to find the smallest number
of causes for an observed signal under a linear generative model

x = Φa+ ε, (1)

where x ∈ RM is the observed signal, a ∈ RN is the coefficient vector, Φ ∈ RM×N

is the dictionary of causes, and ε is Gaussian noise. The coefficient vector is said to be
sparse as we seek a solution with relatively few non-zero entries. The coefficients a are
generally inferred via MAP estimation, which results in solving a non-linear optimiza-
tion problem

min
a

E =
1

2
||x− Φa||22 + λC̃ (a) , (2)

where C̃ (·) is a cost function penalizing a based on its fit with the signal model, and λ
is a parameter denoting the relative tradeoff between the data fidelity term (i.e., MSE,
which arises from the log likelihood of the Gaussian noise) and the cost function. The
cost function is the non-linear sparsity-inducing regularization term, corresponding to
the log prior of the data model. More details about the formulation of this problem in
the Bayesian inference framework can be found in (Olshausen & Field, 1997). Basic
signal models frequently assume independence among the elements of a, resulting in a
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cost function that separates into a sum of individual costs
(

i.e., C̃ (a) =
∑

k C (ak)
)

.

One common example is the `p norm, defined as C̃ (a) = ‖a‖pp = (
∑

i a
p
i ).

2.2 Dynamical systems for `1 minimization
As mentioned above, recent work in computational neuroscience has shown that the
LCA dynamical system provably solves the optimization programs in (2) and are ef-
ficient for solving the non-smooth problems of interest in sparse approximation. The
LCA (Rozell et al., 2010) architecture is comprised of a network of analog nodes being
driven by the signal to be approximated. Each node competes with neighboring nodes
for a chance to represent the signal, and the steady-state response represents the solution
to the optimization problem.

The LCA is a specific type of Hopfield neural network, which have a long history
of being used to solve optimization problems (Hopfield, 1982). The LCA is a neurally
plausible architecture, consisting of a network of parallel nodes that use computational
primitives that are well-matched to individual neuron models. In particular, each node
consists of a leaky integrator and a non-linear thresholding function, and it is driven
by both feedforward and lateral (inhibitory and excitatory) recurrent connections. This
architecture has been implemented in neuromorphic hardware, both as a purely analog
system (Shapero et al., 2012a) and by using integrate and fire spiking neurons for each
node (Shapero et al., 2012b). We also note that other types of network structures have
also been proposed recently to approximately solve specific versions of the sparse ap-
proximation problem (Rehn & Sommer, 2007; Perrinet et al., 2004; Zylberberg et al.,
2011; Hu et al., 2012).

Specifically, the kth node of the LCA is associated with φk, the kth column of Φ.
Without loss of generality, we assume each column has unit norm. This node is de-
scribed at a given time t by an internal state variable uk(t). The coefficients a are
related to the internal states u via an activation (thresholding) function a(t) = T̃λ (u(t))
that is parametrized by λ. In the important special case when the cost function is sepa-
rable, the output of each node k can be calculated independently of all other nodes by a
pointwise activation function ak(t) = Tλ (uk(t)). Individual nodes are leaky integrators
driven by an input proportional to 〈φk,x〉, and competition between nodes occurs via
lateral connections that allow highly active nodes to suppress nodes with less activity.
The dynamics for node k are given by:

u̇k(t) =
1

τ

〈x,φk〉 − uk(t)− N∑
j=1

j 6=k

〈φk,φj〉aj(t)

 , (3)

where τ is the system time constant. In vector form, the dynamics for the whole network
are given by:

u̇(t) =
1

τ

[
Φtx− u(t)−

(
ΦtΦ− I

)
a(t)

]
. (4)

In (Rozell et al., 2010) it was shown that for the energy surface E given in (2) with
a separable, continuous and piecewise differentiable cost function, the path induced by
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the LCA (using the outputs ak(t) as the optimization variable) ensures dE(t)
dt
≤ 0 when

the cost function satisfies:

λ
dC (ak)

dak
= uk − ak = uk − Tλ (uk) = T−1λ (ak)− ak, (5)

where Tλ (uk) is non-decreasing. We use the notation T−1λ (uk) for convenience when
the activation function is invertible, but this invertibility is not strictly required (i.e., the
relationship in (5) involving just Tλ (uk) is sufficient). The same arguments also extend
to the more general case of non-separable cost functions, ensuring dE(t)

dt
≤ 0 when

λ∇aC̃ (a) = u− a = u− T̃λ (u) = T̃−1λ (a)− a. (6)

Recent followup work (Balavoine et al., 2011) establishes stronger guarantees on the
LCA, specifically showing that this system is globally convergent to the minimum of
E (which may be a local minima if C (·) is not convex) and proving that the system
converges exponentially fast with an analytically bounded convergence rate.

The relationship in (5) requires cost functions that are differentiable and activation
functions that are invertible. However, the cost function for BPDN (the `1 norm) is
non-smooth at the origin and the most effective sparsity-promoting activation functions
will likely have non-invertible thresholding properties. In these cases, one can start
with a smooth cost function that is a relaxed version of the desired cost and calculate
the corresponding activation function. Taking the limit of the relaxation parameter in
the activation function yields a formula for Tλ (·) that can be used to solve the desired
problem. Specifically, in the appendix we use the log-barrier relaxation (Boyd & Van-
denberghe, 2004) to show that the LCA solves BPDN when the activation function is
the well-known soft thresholding function:

C (ak) = |ak| ⇐⇒ ak = Tλ (uk) =

{
0 |uk| ≤ λ

uk − λsign(uk) |uk| > λ
.

Similarly, the LCA can find a local minima to the non-convex optimization program
that minimizes the `0 “norm” of the coefficients (i.e., number of non-zeros) by using
the hard thresholding activation function (Rozell et al., 2010):

C (ak) = I (ak 6= 0) ⇐⇒ ak = Tλ (uk) =

{
0 |uk| ≤ λ

uk |uk| > λ
,

where I(·) is the standard indicator function.

3 Alternate inference problems in the LCA architecture
Using the basic relationships described in (5) and (6), a variety of cost functions can be
optimized in the same basic LCA structure by analytically determining the correspond-
ing activation function.1 These optimization programs include approximate `p norms,

1We also note that a cost function might be easily implementable even in the absence of an analytic
formula for the activation function simply by using numerical integration to find a solution and fitting the
resulting curve.
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modified `p norms that attempt to achieve better statistical properties than BPDN, the
group/block `1 norm that induces co-activation structure on the non-zero coefficients,
re-weighted `1 and `2 algorithms that represent hierarchical statistical models on the
coefficients, and classic Tikhonov regularization.

Before exploring specific alternate cost functions in the remainder of this section,
it is worthwhile to make a technical note regarding the optimization programs that are
possible to implement in the LCA architecture. The strong theoretical convergence
guarantees established for the LCA (Balavoine et al., 2011) apply to a wide variety of
possible systems, but do impose some conditions on the permissible activation func-
tions. We will rely on these same conditions to analytically determine the relation-
ship between the cost and activation functions for the examples in this section. Trans-
lated to conditions on the cost functions, the convergence results for the LCA (Bal-
avoine et al., 2011) require that the cost functions be positive

(
C̃ (a) ≥ 0

)
, symmetric(

C̃ (−a) = C̃ (a)
)

, and satisfy the condition that the matrix
(
λ∇2

aC̃ (a) + I
)

is pos-

itive definite (i.e., λ∂2C (ak) /∂a
2
k + 1 > 0 for separable cost functions). This last

condition can intuitively be viewed as requiring that the activation function resulting
from (6) has only a single output for a given input.

Some of the cost functions considered here have non-zero derivatives at the ori-
gin, leading to a range of values around the origin where Tλ (uk) is not defined ac-
cording to the relationship in (5). In these cases, the smallest value for which the
threshold function is defined results in a zero-valued output (i.e., Tλ (uk) = 0 at uk =
limak→0+ λ∂C (ak) /∂ak). Since the second derivative condition on the cost function
constrains the activation function to be non-decreasing, we can infer that the only al-
lowable value of the activation function must be zero for the regions that are not well-
characterized by the relationship in (5). Finally, we note that in most cases we will only
consider the behavior of the activation function for uk ≥ 0 because the behavior for
uk < 0 is implied by the symmetry condition.

3.1 Approximate `p norms (0 ≤ p ≤ 2)

Perhaps the most widely used family of cost functions are the `p norms C̃ (a) = ‖a‖pp.
These separable cost functions include ideal sparse approximation (i.e., counting non-
zeros), BPDN, and Tikhonov Regularization (Tikhonov, 1963) as special cases (p =
0, 1 and 2, respectively), and are convex for p ≥ 1. Furthermore, recent research has
shown some benefits of using non-convex `p norms (p < 1) for inverse problems with
sparse signal models (Saab et al., 2008; Elad et al., 2007). While the ideal activa-
tion functions can be determined exactly for the three special cases mentioned above
(p = 0, 1 and 2), it is not possible to analytically determine the activation function for
arbitrary values of 0 ≤ p ≤ 2. Elad et al. (Elad et al., 2007) recently introduced several
parameterized approximations to the `p cost functions that are more amenable to analy-
sis. In this section, we use these same approximations to determine activation functions
for minimizing approximate `p norms for 0 ≤ p ≤ 2.
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Figure 1: Cost functions and their corresponding thresholding functions. Left: The cost
functions are compared for the (top) `1 with λ = 0.5, scale invariant Bayes with λ = 0.5,
the Huber cost with λ = 0.5 and ε = 0.3 and (bottom) `0 with λ = 0.5, SCAD with λ = 0.5
and κ = 3.7 and transformed `1 with thresh = 0.5 and β = 2. Right: The corresponding
nonlinear activation function which can be used in the LCA to solve the regularized
optimization program for each cost function.

Approximate `p for 1 ≤ p ≤ 2

For 1 ≤ p ≤ 2, Elad et al. (Elad et al., 2007) propose the approximate cost function

C (a) =
∑
k

[
c|ak| − cs log

(
1 +
|ak|
s

)]
,

as a good match for the true `p norm for some value of parameters s and c. In the limiting
cases, c = 1 with s→ 0 yields the `1 norm and c = 2s with s→∞ yields the `2 norm.
Three intermediate examples for p = 1.25, 1.5 and 1.75 are shown in Figure 2. For
any specific value of p, we find the best values of c and s by using standard numerical
optimization techniques to minimize the squared error to the true cost function over the
interval [0,2]. From this cost function, we can differentiate to obtain the relationship
between each uk and ak as

uk = ak + λ
cak
s+ ak

.

We see from this relationship that with c = 1 and s→ 0, we obtain ak = uk − λ for
uk > λ (i.e., the soft-thresholding function for BPDN), while with c = 2s and s → ∞
we obtain ak = uk

1+2λ
(i.e., a linear amplifier for Tikhonov Regularization). Solving for

ak in terms of uk (restricting the solution to be positive and increasing) yields a general
relationship for the activation function

Tλ (uk) =
1

2

[
uk − s− cλ+

√
(uk − s− cλ) + 4uks

]
.
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Figure 2: Approximate `p cost functions and their corresponding thresholding func-
tions. Left: The cost functions are approximated over the parameters c, s for values of p
ranging from 0 to 1 (top) and 1 to 2 (bottom). The true `p costs are shown as dotted lines
in the same colors. Using these values of c and s, a nonlinear activation function that
can be used in the LCA to solve the optimization is plotted (right) using the threshold-
ing equations for 0 < p < 1 (top) and 1 < p < 2 (bottom). The thresholding functions
clearly span the ranges between soft and hard thresholding for the lower range of p and
between soft thresholding and linear amplification for the upper range of p.

This solution is shown in Figure 2 for p = 1.25, 1.5 and 1.75 for λ = 0.5.

Approximate `p for 0 ≤ p ≤ 1

For 0 ≤ p ≤ 1, Elad et al. (Elad et al., 2007) also propose the following approximate
cost function as a good match for the true `p norm for some value of parameters s and
c:

C (ak) = cs log

(
1 +
|ak|
s

)
,

where the parameters c > 0 and s > 0 can be optimized as above to approximate differ-
ent values of p. Three approximations for p = 0.5, 0.75 and 0.9 are shown in Figure 2.
To determine the activation function, we again differentiate and find the appropriate
relationship to be

ak +
λcs

s+ ak
= uk.

Solving for ak reduces to solving a quadratic equation, which leads to two possible
solutions. As above, we restrict the activation function to only include the solution that
is positive and increasing, resulting in the activation function

Tλ (uk) =
1

2

(
uk − s+

√
(uk + s)2 − 4λcs

)
.

This activation function is only valid over the range where the output is a positive real
number. If cλ ≤ s, this condition reduces to uk ≥ cλ. More generally, this condition
reduces to uk ≥ 2

√
2csλ− s.
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3.2 Modified `p norms
While the general `p norms have historically been very popular cost functions, many
people have noted that this approach can have undesirable statistical properties in some
instances (e.g., BPDN can result in biased estimates of large coefficients (Zou, 2006)).
To address these issues, many researchers in signal processing and statistics have pro-
posed modified cost functions that attempt to alleviate these statistical concerns. For
example, hybrid `p norms smoothly morph between different norms to capture the most
desirable characteristics over different regions. In this section we will demonstrate that
many of these modified `p norms can also be implemented in the basic LCA architec-
ture.

Smoothly Clipped Absolute Deviations

A common goal for modified `p norms is to retain the continuity of the cost function
near the origin demonstrated by the `1 norm, while using a constant cost function for
larger coefficients (similar to the `0 norm) to avoid statistical biases. One approach to
achieving these competing goals is the smoothly clipped absolute deviations (SCAD)
penalty (Fan, 1997; Antoniadis & Fan, 2001). The SCAD approach directly concate-
nates the `1 and `0 norms with a quadratic transition region, resulting in the cost function
given by

C (ak) =


ak 0 < ak ≤ λ

1
(κ−1)λ(akκλ−

a2k
2
− λ2

2
) λ < ak ≤ κλ

λ
2
(1 + κ) κλ < ak

,

for κ ≥ 1 (κ defines the width of the transition region). An example of this cost function
with λ = 0.5 and κ = 3.7 is shown in Figure 1.

To obtain the activation function we again solve λdC(ak)
dak

+ ak = uk for ak as a func-
tion of uk. For SCAD (and all of the piecewise cost functions we consider), the activa-
tion function can be determined individually for each region, paying careful attention
to the ranges of the inputs uk and outputs ak to ensure consistency. For 0 < ak ≤ λ, we
have λ + ak = uk, implying that ak = 0 for uk < λ and ak = uk − λ over the interval
λ < uk < 2λ. For λ < ak ≤ κλ, we have

λ
(κλ− ak)
(κ− 1)λ

+ ak = uk =⇒ ak =
(κ− 1)uk − κλ

κ− 2

over the interval 2λ < uk < κλ. Finally, for κλ < ak we have ak = uk, giving the full
activation function

ak = Tλ (uk) =


0 uk ≤ λ

uk − λ λ ≤ uk ≤ 2λ
κ−1
κ−2uk −

κλ
κ−2 2λ ≤ uk ≤ κλ

uk κλ ≤ uk

,

which is shown in Figure 1 for λ = 0.5 and κ = 3.7. Note that this activation function
requires κ ≥ 2 (Antoniadis and Fan recommend a value of κ = 3.7 (Antoniadis &
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Fan, 2001)). While this is apparent from consistency arguments once the thresholding
function has been derived, this restriction on κ can also be deduced from the condition
λ∂2C (ak) /∂a

2
k + 1 > 0.

Transformed `1

Similar to the SCAD cost function, the transformed `1 cost (Antoniadis & Fan, 2001;
Nikolova, 2000) attempts to capture something close to the `1 norm for small coeffi-
cients while reducing the penalty on larger coefficients. Specifically, transformed `1
uses the fractional cost function given by

C (ak) =
β|ak|

1 + β|ak|
,

for some β > 0. An example of this cost with β = 2 and λ = 0.5 is shown in Figure
1. After calculating the derivative of the cost function, the activation function can be
found by solving

λβ

(1 + βak)2
+ ak = uk

for ak. Inverting this equation reduces to solving a cubic equation in ak. The three
roots can be calculated analytically, but only one root generates a viable thresholding
function by being both positive and increasing for positive uk. That root is given by

ak = β uk−2
3β

+ 2
2
3

6β

(
6 β uk − 27 β2 λ+ 6 β2 u2k + 2 β3 u3k

+ 3
√

3 β3

√
−λ (4β3 u3k+12β2 u2k−27λβ2+12β uk+4)

β4 + 2

) 1
3

+ β2
1
3 (β uk+1)2

3

6β uk−27β2 λ+6β2 u2k+2β3 u3k+3
√
3β3

√
−
λ(4 β3 u3

k
+12 β2 u2

k
−27λβ2+12 β uk+4)
β4

+2


1
3

.

This solution is viable only when ak is real valued, which corresponds to the range

uk ≥
(

3
(
λ
4β

)1/3
− 1

β

)
. Outside of this range, no viable non-zero solution exists and

so ak = 0. The full thresholding function is shown in Figure 1 for λ = 0.5 and β = 2..

Huber Function

The Huber cost function (Huber, 1973) aims to modify standard `2 optimization to im-
prove the robustness to outliers. This cost function consists of a quadratic cost function
on smaller values and a smooth transition to an `1 cost on larger values, given by

C (ak) =

{
a2k
2ε

0 ≤ |ak| ≤ ε

|ak| − ε
2

ε < |ak|
.

An example of the Huber cost is shown in Figure 1 for λ = 0.5 and ε = 0.3. As in the case
of other piecewise cost functions, we calculate the activation function separately over
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each interval of interest by calculating the derivative of the cost function in each region.
For the first interval, the relationship is given by λak

ε
= uk − ak, which obviously gives

the activation function Tλ (uk) = εuk
ε+λ

for |uk| ≤ ε+λ. For the second interval, we have

λ ak
|ak|

= uk−ak, which yields the activation function Tλ (uk) = uk

(
1− λ

|uk|

)
for |uk| >

ε+ λ. Putting the pieces together, the full activation function (as expected) is a mixture
of the Tikhonov regularization and the soft thresholding used for `1 optimization given
by

ak = Tλ (uk) =

{
εuk
ε+λ

|uk| ≤ ε+ λ

uk

(
1− λ

|uk|

)
|uk| > ε+ λ

,

which is shown in Figure 1 for λ = 0.5 and ε = 0.3. We can see that as ε → 0, the cost
function converges to the `1 norm and the thresholding function correctly converges
back to the soft-threshold function derived earlier using the log-barrier method.

Amplitude Scale Invariant Bayes Estimation

A known problem with using the `1 norm as a cost function is that it is not scale invari-
ant, meaning that the results can be poor if the amplitude of the input signals changes
significantly (assuming a constant value of λ). Many cost functions (including the ones
presented above) are heuristically motivated, drawing on intuition and tradeoffs be-
tween the behavior of various `p norms. In contrast, Figueiredo and Nowak (Figueiredo
& Nowak, 2001) approach the problem from the perspective of Bayesian inference with
a Jeffreys’ prior to determine a cost function with more invariance to amplitude scaling,
similar to the non-negative Garrote (Gao, 2001). We consider here the cost function

C (a) =
∑
k

− a
2
k

4λ
+
ak
√
a2k + 4λ2

4λ
+ λ log

(
ak +

√
a2k + 4λ2

)
,

which is proportional to the one given by Figueiredo and Nowak (Figueiredo & Nowak,
2001) and is shown in Figure 1 for λ = 0.5.

Taking the derivative of this cost function, we end up with the relationship between
uk and ak

uk − ak = −2λ
ak
4λ

+
2λ

4λ

√
a2k + 4λ2.

Solving for ak as a function of uk yields the following activation function,

ak = Tλ (uk) =

{
0 uk ≤ λ

(u2k − λ2)/uk uk > λ
,

matching the results from Figueiredo and Nowak (Figueiredo & Nowak, 2001). This
activation function is shown in Figure 1 for λ = 0.5.

3.3 Block `1
While all cost functions discussed earlier in this section have been separable, there is
increasing interest in non-separable cost functions that capture structure (i.e., statistical
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Figure 3: The nonlinear activation function used in the LCA to optimize the non-
overlapping group LASSO cost function has multiple inputs and multiple outputs. The
plot shows an example thresholding function for both elements in a group of size two
(λ = 0.5), with each line illustrating the nonlinear effect on a1 while u2 is held constant.

dependencies) between the non-zero coefficients. For example, such structure would be
important in performing inference in a complex cell energy model where the energies
(i.e., magnitudes) are sparse in a complex-valued signal decomposition (e.g., (Cadieu &
Olshausen, 2012)). Perhaps the most widely cited cost function discussed in this regard
is the block `1 norm (also called the group `1 norm), which assumes that the coeffi-
cients representing x are active in known groups. In this framework, the coefficients
are divided into blocks, Al ⊂ {ak} and each block of coefficients Al is represented as
a vector al. For our purposes, we assume the blocks are non-overlapping but may have
different cardinalities. The block `1 norm (Eldar et al., 2010) is defined as the `1 norm
over the `2 norms of the groups,

C̃ (a) =
∑
l

∥∥al∥∥
2
,

essentially encouraging sparsity between the blocks (i.e., requiring only a few groups
to be active) with no individual penalty on the coefficient values within a block. Be-
cause this cost is not separable, the activation function will no longer be a pointwise
nonlinearity and will instead have multiple inputs and multiple outputs.

Following the same general approach as above, we calculate the gradient of the cost
function for each block,

∇alC̃ (a) =
al

‖al‖2
,

yielding the following relationship between the activation function inputs and outputs

ul = al + λ
al

‖al‖2
. (7)

While directly solving this relationship for al appears difficult, we note that we can
simplify the equation by expressing

∥∥al∥∥
2

in terms of
∥∥ul∥∥

2
. To see this, take the norm
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of both sides of (7) to get
∥∥ul∥∥

2
=
∥∥al∥∥

2
+λ. Substituting back into (7), the relationship

simplifies to

T̃λ
(
ul
)

= al = ul
(

1− λ

‖ul‖2

)
over the range 0 ≤

∥∥al∥∥
2

=
∥∥ul∥∥

2
− λ, implying λ ≤

∥∥ul∥∥
2
.

This relationship yields the block-wise thresholding function

al = T̃λ
(
ul
)

=

0
∥∥ul∥∥

2
≤ λ

ul
(

1− λ

‖ul‖
2

) ∥∥ul∥∥
2
> λ

.

This activation function can be thought of as a type of shrinkage operation applied to
an entire group of coefficients, with a threshold that depends on the norm of the group
inputs. For the case of groups of two elements (with λ = 0.5), Figure 3 shows the
nonlinearities for each of the two states as a function of the value of the other state.

3.4 Re-weighted `1 and `2
Recent work has also demonstrated that re-weighted `p norms can achieve better spar-
sity by iteratively solving a series of tractable convex programs (Wipf & Nagarajan,
2010; Chartrand & Yin, 2008; Candès et al., 2008; Garrigues & Olshausen, 2010). For
example, re-weighted `1 (Candès et al., 2008) is an iterative algorithm where a single it-
eration consists of solving a weighted `1 minimization

(
C̃ (a) =

∑
k λk|ak|

)
, followed

by a weight update according to the rule

λk ∝
1

|ak|+ γ
, (8)

where γ is a small parameter. By having λk approximately equal to the inverse of the
`1 norm of the coefficient from the previous iteration, this algorithm is more aggressive
than BPDN at driving small coefficients to zero and increasing sparsity in the solutions.
Similarly, re-weighted `2 algorithms (Wipf & Nagarajan, 2010) have also been used to
approximate different p-norms with weights updated as

λk ∝
1

(a2k + γ)
( p
2
−1) .

Such schemes have shown many empirical benefits over `p norm minimization, and
recent work on re-weighted `1 has established theoretical performance guarantees (Kha-
jehnejad et al., 2010) and interpretations as Bayesian inference in a probabilistic model (Gar-
rigues & Olshausen, 2010).

One of the main drawbacks to re-weighted algorithms in digital architectures is the
time required for solving the weighted `p program multiple times. Of course, it is also
not clear that a discrete iterative approach such as this could be mapped to an asyn-
chronous analog computational architecture. Because we have established earlier that
the LCA architecture can solve the `p norm optimizations (and weighted norms are a
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straightforward extension to those results), it would immediately follow that a dynam-
ical system could be used to perform the optimization necessary for each iteration of
the algorithm. While this would be a viable strategy, we show here that even more
advantages can be gained by performing the entire re-weighted `1 algorithm in the con-
text of a dynamical system. Specifically, we consider here a modified version of the
LCA where an additional set of dynamics are placed on λ in order to simultaneously
optimize the coefficients and coefficient weights in an analog system. While the ideas
here are expandable to the general re-weighted case, we focus on results involving the
re-weighted `1 as presented in (Garrigues & Olshausen, 2010).

The modified LCA is given by the system equations:

τuu̇(t) = ΦTx− u(t)−
(
ΦTΦ− I

)
a(t)

a(t) = Tλ (u(t))

τλλ̇k(t) = λ−1k (t)− ν−1 (|ak(t)|+ γ)
.

At steady state, λ̇ = 0 which shows that λk (∞) abides by (8) with ν representing the
proportionality constant. While the complete analysis of this expanded analog system
is beyond the scope of this paper, we show in Figure 4a simulations which demonstrate
that this system reaches a solution of comparable quality to digital iterative methods.
Figure 4a plots the relative MSE from a compressed sensing recovery problem with
length-1000 vectors from 500 noisy measurements with varying levels of sparsity. We
sweep the parameter ρ = S/M from zero to one and set the noise variance to 10−4,
with each plot representing the relative MSE averaged over 15 randomly chosen signals.
Figure 4(a) plots the recovery quality for three systems: iterative re-weighted `1 (using
GPSR (Figueiredo et al., 2007) to solve the `1 iterations), iterative re-weighted `1 (using
the LCA to solve the `1 iterations), and dynamic re-weighted `1 which uses the modified
LCA described above. It is clear that the three systems are achieving nearly the same
quality in their signal recovery. Figure 4b plots the convergence of the recovery as a
function of time (in terms of system time constants τ ) for the iterative and dynamic
re-weighted approaches using the LCA. The dynamically re-weighted system clearly
converges more quickly, achieving its final solution in approximately the time it takes to
perform two iterations of the traditional re-weighting scheme using the standard LCA.

4 Conclusions and future work
Sparsity-based signal models have played a significant role in many theories of neural
coding across multiple sensory modalities. Despite the interest in the sparse coding
hypothesis from the computational and theoretical neuroscience communities, the qual-
itative nature of much of the supporting evidence leaves significant ambiguity about
the ideal form for a sparsity-inducing cost function. While recent trends favor the `1
norm due the emergence of guarantees in the signal processing literature, there are
many sparsity-inducing signal models that may have benefits for neural computation
and should be candidate models for neural coding. We have shown here that many
of the sparsity-inducing cost functions proposed in the signal processing and statistics
literatures can be implemented in a single unified dynamical system.
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Figure 4: Re-weighted `1 optimization in digital algorithms and in a modified LCA.
(a) Re-weighted `1 optimization for a signal with N = 1000 and δ = 0.5, with ρ swept
from 0 to 1. The traditional iterative re-weighting scheme is performed with both a stan-
dard digital algorithm (GPSR) and the LCA. For comparison, a dynamic re-weighting
scheme where the LCA is modified to have continuous dynamics on the regularization
parameter (rather than discrete iterations) is also shown. Each method is clearly achiev-
ing similar solutions. (b) The temporal evolution of the recovery relative MSE for a
problem with N = 1000, δ = 0.6 and ρ = 0.45. Solutions are shown for the amount of
simulated time (in terms of number of time constants). The dynamically re-weighted
system converges in approximately the time it takes to use the LCA to solve two itera-
tions of the traditional re-weighted `1 algorithm.

From the results presented here, we conclude that neurally-plausible computational
architectures can support a wide variety of sparsity-based signal models, and it is there-
fore reasonable to consider this broad family of models as reasonable candidates for
theories of sensory neural coding. Furthermore, we have shown that even a relatively
complex hierarchical probabilistic model resulting in a re-weighted `1 inference scheme
can be implemented efficiently in a purely analog system. This observation is particu-
larly interesting because it illustrates a fundamental potential advantage of analog com-
putation over digital systems. Specifically, the analog approach to this problem is able
to continuously infer two sets of variables jointly, rather than take an iterative approach
that fundamentally must wait for the computations in each iteration for one variable to
fully converge before inferring the other variable.

Beyond the applicability of these results to theories of neural computation, the re-
cent shift toward optimization as a fundamental computational tool in the modern signal
processing toolbox has made it difficult to implement many of these algorithms in ap-
plications with significant power constraints or real-time processing requirements. The
results of this paper broaden the scope of problems that could potentially be approached
through efficient neuromorphic architectures. The design and implementation of analog
circuits has traditionally been difficult, but recent advances in reconfigurable analog cir-
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cuits (Twigg & Hasler, 2009) have improved many of the issues related to the design of
these systems. In fact, the reconfigurable platform described in (Twigg & Hasler, 2009)
has been used to implement a small version of the LCA for solving BPDN (Shapero
et al., 2012a,b), and preliminary tests of this implementation are consistent with simu-
lations of the idealized LCA. These results lend encouragement to the idea that efficient
analog circuits could be implemented for the variety of cost functions described in this
paper.

Acknowledgments
The authors are grateful to B. Olshausen and J. Romberg for valuable discussions re-
lated to this work.

Appendix

Soft-threshold activation for BPDN using the log-barrier relaxation
We will first rewrite the desired BPDN problem (Equation (2) with the `1 cost funtion)
in an extended formulation to make the variables non-negative. Define a new M × 2N
matrix through the concatenation operation Φ̃ = [Φ − Φ]. Similarly define a vector
z = [z+ z−] of length 2N such that zi ≥ 0 and a = z+ − z−. Essentially z represents
the original variables a by separating them into two subvectors depending on their sign.
We can then write a constrained optimization program that is equivalent to BPDN:

min
z

1

2

∣∣∣∣∣∣x− Φ̃z
∣∣∣∣∣∣2
2

+ λ
2N∑
k=1

zk s.t. zk ≥ 0. (9)

This reformulation is a standard way to show that `1 cost penalties are equivalent to
a linear function in a constrained optimization program. One can then apply the stan-
dard log-barrier relaxation to convert the program in (9) to an approximately equivalent
unconstrained program:

min
z

1

2

∣∣∣∣∣∣x− Φ̃z
∣∣∣∣∣∣2
2

+ λ

2N∑
k=1

zk +

(
1

γ

) 2N∑
k=1

log(zk). (10)

As γ → ∞, this program approaches the desired program (9). This relaxation strategy
underlies an interior point algorithm (called the barrier method) for solving convex op-
timization programs, where (10) is repeatedly solved with increasing values of γ (Boyd
& Vandenberghe, 2004).

Note that the relaxed problem in (10) fits the form of the general optimization pro-
gram stated in (2) with the differentiable cost function C (zk) = zk − log(zk)

γλ
. For a

fixed value of γ, this cost function can be differentiated and used in the relationship
given in (5) to solve for zk in terms of uk to find the corresponding invertible activation
function:

zk = Tλ (uk) =
1

2

(√
4 + γ(λ− uk)2

γ
− (λ− uk)

)
.
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Figure 5: Log barrier relaxations of BPDN. (a) The cost function approaches the ideal
`1 norm as the relaxation parameter is increased. (b) In a similar way, the nonlinear
activation function derived for the LCA approaches the ideal soft-thresholding operator
as the relaxation parameter is increased.

Finally it is straightforward to show that in the relaxation limit (γ → ∞) where the
program in (10) approaches BPDN, the desired activation function becomes the soft-
thresholding function:

lim
γ→∞

1

2

(√
4 + γ(λ− uk)2

γ
− (λ− uk)

)
=

1

2

(√
(λ− uk)2 − (λ− uk)

)
=

{
0 when uk ≤ λ

uk − λ when uk > λ
.

To illustrate the convergence of this relaxation to the desired `1 cost function and the
corresponding soft-threshold activation function, Figure 5 plots C (·) and Tλ (·) in this
relaxed problem for several values of γ. Note that in the extended formulation of BPDN
given in (9), the variables occur in pairs where where only one of them can be nonzero
at a time. Because the activation function is zero for all state values with magnitude less
than threshold, it is possible to represent each of these pairs of variables in one LCA
node that can take on positive and negative values and where the activation function is a
two-sided soft-thresholding function (thereby reducing the number of nodes back down
to N ).

References
Antoniadis, A. & Fan, J. (2001). Regularization of wavelet approximations. Journal of

the American Statistical Association, 96, 939–967.

17



Balavoine, A., Romberg, J., & Rozell, C. (2011). Convergence and rate analysis of
neural networks for sparse approximation. In Press.

Battaglia, P., Jacobs, R., & Aslin, R. (2003). Bayesian integration of visual and auditory
signals for spatial localization. JOSA A, 20, 1391–1397.

Baum, E., Moody, J., & Wilczek, F. (1988). Internal representations for associative
memory. Biological Cybernetics, 59, 217–228.

Boyd, S. & Vandenberghe, L. (2004). Convex Optimization. (Cambridge University
Press).

Cadieu, C. F. & Olshausen, B. A. (2012). Learning intermediate-level representations
of form and motion from natural movies. Neural Computation, 24, 827–866.

Candès, E., Wakin, M., & Boyd, S. (2008). Enhancing sparsity by reweighted `1 mini-
mization. Journal of Fourier Analysis and Applications, 14, 877–905.

Charles, A. S., Yap, H. L., & Rozell, C. J. (2012). Short-term memory capacity in recur-
rent networks via compressed sensing. In Computational and Systems Neuroscience
(Cosyne) Meeting.

Chartrand, R. & Yin, W. (2008). Iteratively reweighted algorithms for compressive
sensing. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 3869–3872.

Coen-Cagli, R., Dayan, P., & Schwartz, O. (2012). Cortical surround interactions and
perceptual salience via natural scene statistics. PLoS Comput Biol, 8, e1002405.

Doya, K. (2007). Bayesian brain: Probabilistic approaches to neural coding. (The MIT
Press).

Elad, M., Figueiredo, M., & Ma, Y. (2010). On the role of sparse and redundant repre-
sentations in image processing. Proceedings of the IEEE, 98, 972–982.

Elad, M., Matalon, B., & Zibulevsky, M. (2007). Coordinate and subspace optimiza-
tion methods for linear least squares with non-quadratic regularization. Applied and
Computational Harmonic Analysis, 23, 346–367.

Eldar, Y. C., Kuppinger, P., & Bolcskei, H. (2010). Block-sparse signals: Uncertainty
relationships and efficient recovery. IEEE Transactions on Signal Processing, 58,
3042–3054.

Fan, J. (1997). Comments on ‘Wavelets in statistics: A review’ by A. Antoniadis.
Statistical Methods and Applications, 6, 131–138.

Figueiredo, M. A. T. & Nowak, R. D. (2001). Wavelet-based image estimation: An
empirical Bayes approach using Jeffrey’s noninformative prior. IEEE Transactions
on Image Processing, 10, 1322–1331.

18



Figueiredo, M. A. T., Nowak, R. D., & Wright, S. J. (2007). Gradient projection for
sparse reconstruction: Application to compressed sensing and other inverse prob-
lems. IEEE Journal of Selected Topics in Signal Processing.

Gao, H. (2001). Wavelet shrinkage denoising using the non-negative Garrote. Journal
of Computational and Graphical Statistics, 7, 469–488.

Garrigues, P. & Olshausen, B. (2010). Group sparse coding with a laplacian scale
mixture prior. Advances in Neural Information Processing Systems, pp. 1–9.

Haider, B., Krause, M., Duque, A., Yu, Y., Touryan, J., Mazer, J., & McCormick, D.
(2010). Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical
Activity during Nonclassical Receptive Field Stimulation. Neuron, 65, 107–121.

Hopfield, J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79, 2554.

Hu, T., Genkin, A., & Chklovskii, D. B. (2012). A network of spiking neurons for
computing sparse representations in an energy efficient way. In Press.

Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. The
Annals of Statistics, 1, 799–821.

Hürlimann, F., Kiper, D., & Carandini, M. (2002). Testing the bayesian model of per-
ceived speed. Vision research, 42, 2253–2257.

Karklin, Y. & Lewicki, M. (2008). Emergence of complex cell properties by learning
to generalize in natural scenes. Nature, 457, 83–86.

Khajehnejad, M., Xu, W., Avestimehr, S., & Hassibi, B. (2010). Improved sparse
recovery thresholds with two-step reweighted `1 minimization. Arxiv preprint
arXiv:1004.0402.

Lennie, P. (2003). The cost of cortical computation. Current biology, 13, 493–497.

Nikolova, M. (2000). Local strong homogeneity of a regularized estimator. SIAM
Journal on Applied Mathematics, 61, 633–658.

Olshausen, B. & Field, D. (1996). Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381, 607.

Olshausen, B. & Field, D. (2004). Sparse coding of sensory inputs. Current opinion in
neurobiology, 14, 481–487.

Olshausen, B. A. & Field, D. (1997). Sparse coding with an overcomplete basis set: A
strategy employed by v1? Vision Research, 37, 3311–3325.

Perrinet, L., Samuelides, M., & Thorpe, S. (2004). Sparse spike coding in an asyn-
chronous feed-forward multi-layer neural network using matching pursuit. Neuro-
computing, 57, 125 – 134.

19



Rao, R. & Ballard, D. (1999). Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2,
79–87.

Rehn, M. & Sommer, F. T. (2007). A network that uses few active neurones to code
visual input predicts the diverse shapes of cortical receptive fields. Journal of Com-
putational Neuroscience, 22, 135–146.

Rozell, C. & Garrigues, P. (2010). Analog sparse approximation for compressed sensing
recovery. In Proceedings of the 2010 ASILOMAR Conference on Signals, Systems
and Computers, pp. 822–826.

Rozell, C. J., Johnson, D. H., Baraniuk, R. G., & Olshausen, B. A. (2010). Sparse
coding via thresholding and local competition in neural circuits. Neural Computation,
20, 2526–2563.

Saab, R., Chartrand, R., & Yilmaz, O. (2008). Stable sparse approximations via noncon-
vex optimization. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal, pp. 3885–3888.

Schwartz, O. & Simoncelli, E. (2001). Natural signal statistics and sensory gain control.
Nature neuroscience, 4, 819–825.
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