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Abstract—The short term memory of randomly connected
networks has been recently studied in order to better under-
stand the computational and predictive power of such networks.
In particular, random, linear, orthogonal networks have been
explored extensively in the context a single input stream driving
the network. The most recent results state that a stream of
length N can be recovered from a network of size O(S log5(N))
assuming that the input is S-sparse in some basis. Little work,
however, addresses more complex networks where multiple input
streams feed into the same network. In this paper we extend the
results for recovering sparse input streams the multiple input
streams feeding into the same network. We find that we can
recover L input streams of length N with a network that has
O(S log5(LN)) nodes.

Index Terms—Short-term memory, linear neural network,
sparse signals, restricted isometry constant

I. INTRODUCTION

In the past two decades, randomly connected networks
have demonstrated surprising utility in predictive tasks [1].
In particular, the literature has considered networked systems
with M nodes x ∈ RN , where the nodes evolve with an input
stream s[n] ∈ R as

x[n] = f (Wx[n− 1] + zs[n] + ε[n]) (1)

where W ∈ RM×M is the connectivity matrix that describes
how the nodes influence each other, z ∈ RM is the feed-
forward vector that describes how the input stream drives the
nodes, ε ∈ RM is the system noise and f(·) is a potential
nonlinearity (e.g. a sigmoidal saturation). The implication of
these prediction results is that such networks implicitly store
information about the input stream which makes the node
values informative enough to predict future values of the
data stream. Understanding this short-term memory (STM) of
networked systems is therefore important to uncovering the
extent of their computational utility.

Recent work has focused on analysis of STM for linear
network dynamics where f(·) is the identity function, and the
network dynamics are simply

x[n] =Wx[n− 1] + zs[n] + ε[n] (2)

Precisely, this area of research has sought methods to quantify
the information of the input signal’s history stored in the
network nodes [1]–[4]. Many methods have been used to these

ends, including calculating the correlation of past inputs with
the nodes, calculating the VC-dimension of the output states,
and learning linear readout functions to recover the history.

Initial work assuming Gaussian input statistics resulted in
bounds that require a network of at least O(N) nodes to
store input sequences of length N [3]. More recently, the
literature on structured signal analysis has yielded a number
of tools to exploit a fairly common structure: that many
signals can be expressed using few elements of a known
basis. This underlying low dimensional structure has been
shown to be present in many signal classes (e.g. images [5]),
and many novel applications such as compressive sensing [6]
leverage this structure in inverting under-determined linear
processes. In particular, in compressive sensing, this structure
has been used to determine bounds on how many random
samples of a signal are needed to recover the signal when
the number of measurements is much less than the signal’s
ambient dimension. Since randomly connected networks can
behave much like random sampling, it is reasonable to expect
that such networks can also exploit low-dimensional structure
to compress and store long input sequences in far fewer
than N nodes. To this end, recent work has shown that for
certain random network constructions a network with only
O(K logγ(N)) nodes (where K is the sparsity of the signal
in a known basis and γ is a bounded constant) can store input
sequences of length N [7], [8].

While such results are highly encouraging, these approaches
still only address networks with a single input stream. Many
networks, such as biological networks, may have multiple
inputs feeding into a single network. Thus understanding the
interplay of many inputs being processed in a single network,
and the abilities of the network to remember the inputs and
which stream they came from is pivotal in expanding our
ability to analyze networked systems. To this end we provide
here a first step in this direction, expanding the sparsity based
analysis presented in [8] to the multiple input case. We provide
high probability guarantees for the recoverability of L input
streams of length N into a random orthogonal network of
size M . Moreover we show that the recoverability is robust to
system noise, which allows standard `1 recovery techniques
to recover the input values from the node values.
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Fig. 1. a) A network with a single input projects the incoming signal through
the feed-forward vector z into the network which evolves with the feedback
connectivity matrix W . The node values x[n] encode the input signal and
can be used for prediction or classification tasks. b) A multi input network
projects many input streams into the same evolving state. The node values
then include influences from all input streams, however the streams must be
decoupled to understand how each input influenced the nodes.

II. BACKGROUND

A. Network memory

The literature on the STM of networked systems has thus
far focused on understanding how a single input stream
influences the node values at a later time. While STM of
random distributed networks has been studied for many system
architectures, (including continuous-time networks [4], [9] and
spiking networks [10]–[13]), here we focus on discrete-time
networks [2], [3], [14].

Initial approaches in understanding STM for discrete-time
networks make standard Gaussian assumptions on the network
inputs and analyze how informative the nodes are of the past
inputs. Throughout the literature, different definitions have
been used to quantify how the current nodes were related to the
past inputs. For example, one method to test the information
content of the nodes is to measure the correlation between a
past input and the current network state [2]–[4], where a high
correlation would indicate the information of the input was still
present in the system. Another method used in [14] was based
on the ability to train a linear readout of the network states
to recover the past inputs. Throughout all these methods, the
Gaussianity assumption has caused any theoretical bounds to
limit the recoverable inputs to the number of nodes in the
network. This bound is clearly pessimistic for many input
sequences, as even early works have shown that for more
structured inputs the empirically recoverable input history is
longer than the theoretical M > N limit [14].

B. Restricted isometry property

To formalize the observation of [14], recent work has looked
at a specific class of structured input streams where the vector
of inputs s = [s[1], . . . , s[N ]]T ∈ RN is sparse in a basis.
Specifically, s can be written as s = Ψa where a is composed
of only K � N non-zero entries. Such signals have been

extensively analyzed in the literature in the context of linear
inverse problems, where a series of observations

x = As+ ε. (3)

for a linear operator A ∈ RM×N and a noise vector ε ∈ RM
must be inverted for M � N (i.e. the problem is highly under-
determined). By leveraging the sparsity of s, certain conditions
on A guarantee that this highly compressive operator can be
inverted [6]. Specifically, if A satisfies the restricted isometry
property (RIP) of order 2K with parameters δ, C, i.e. for every
2K sparse signal s, the following condition holds,

C (1− δ) ≤ ||As||22 / ||s||
2
2 ≤ C (1 + δ) (4)

then the sparse coefficients a can be recovered via the convex
optimization program

â = argmin
a
||a||1 such that ||x−AΨa||2 ≤ ||ε||2 .

(5)

Furthermore, the recovered coefficients can be shown to be
recoverable up to an estimation error given by

||s− ŝ||2 ≤ α ||ε||2 + β

∣∣∣∣ΨT (s− sK)
∣∣∣∣
1√

K
, (6)

where the constants α and β depend on the RIP constant δ of
A, and sK represents the best K-term approximation to s.

C. RIP for STM

While a number of methods have been attempted to under-
stand how inputs to an evolving network influence the state
at a later time, one method in particular is based on showing
that the states at any time are the result of a unique series of
inputs [10], [12], [14], [15]. This echo state property (ESP) of
the network ensures that since different inputs cause different
network states, the inputs should then be recoverable from
the node values, essentially allowing the inversion of a highly
compressive function. The ESP is very similar to the RIP
with an important difference being that the ESP requires only
uniqueness while the RIP implies robustness of the inversion
process. In our initial work in [8] we showed that linear
distributed networks with random orthogonal connectivity
matrices can satisfy the RIP by proving the following theorem:

Theorem II.1. (Theorem 4.1 from [8]) Suppose N ≥ M ,
N ≥ K and N ≥ O(1). Let U be any unitary matrix of eigen-
vectors (containing complex conjugate pairs) and the entries of
z be i.i.d. zero-mean Gaussian random variables with variance
1
M . For M an even integer, denote the eigenvalues of W
by {ejwm}Mm=1. Let the first M/2 eigenvalues ({ejwm}M/2

m=1)
be chosen uniformly at random on the complex unit circle
(i.e., we chose {wm}M/2

m=1 uniformly at random from [0, 2π))
and the other M/2 eigenvalues as the complex conjugates of
these values. Then, for a given RIP conditioning δ and failure
probability N− log4N ≤ η ≤ 1

e , if

M ≥ CK
δ2
µ2 (Ψ) log5 (N) log(η−1),



the network dynamics satisfy RIP-(K, δ) with probability
exceeding 1−η for a universal constant C, and the coherence
parameter defined in terms of the sparsity basis as

µ (Ψ) = max
n=0,...,N−1

sup
t∈[0,2π]

∣∣∣∣∣
N−1∑
m=0

Ψm,ne
−jtm

∣∣∣∣∣ .
III. MULTIPLE INPUT MODEL

While previous work has primarily dealt with single input
streams as in Equation (2), we can extend these results
to more general architectures where multiple input streams
feed into the same network. Multiple input models are more
complex since all input streams feed in simultaneously and
the same dynamics affects all streams equally. Thus any RIP
condition needs to show that despite the severe mixing, the
node values can still be used to differentiate between different
input streams.

Mathematically, we can express the new input model by
expanding our network dynamics to consider the input at each
time step to be a vector rather than a scalar

x[n] = Wx[n− 1] +

L∑
l=1

zlsl[n] + ε̃[n]

= Wx[n− 1] +Zs[n] + ε̃[n], (7)

where now s[n] ∈ RL for all n and Z ∈ RM×L is now a
feed-forward matrix, which is composed of concatenating all
the individual feed-forward vectors zl. We can analyze this
network by taking similar steps as were used to analyze the
single input case in [8]. First we express the influence of the
input history on the current nodes by assuming x[0] = 01 and
iterating Equation (7):

x[N ] =

N∑
k=1

WN−kZs[k] + ε,

where ε =
∑N
k=1W

N−kε̃[k] is the cumulative system error.
This expression allows to formulate the dynamics as a matrix-
vector multiplication that expresses the input history-to-node
relationship,

x[N ] =
[
Z,WZ, · · · ,WN−1Z

] [
sT [N ], · · · , sT [1]

]T
+ ε.

From this step we can then use the eigenvalue decomposition
of the connectivity matrix W = UDU−1 to express the first
matrix in this product as

x[N ] = U
[
D0, · · · ,DN−1]U−1Z [sT [N ], · · · , sT [1]

]T
+ ε.

Now, by reorganizing the columns, we can obtain

x[N ] = U
[
Z̃1F , · · · , Z̃LF

] [
sT1 , s

T
2 , · · · , sTL

]T
+ ε

= As̃+ ε, (8)

where sl ∈ RN is the lth input stream (sl =

1More generally, x[0] can be non-zero. As long as it is a known quantity,
it can be subtracted from both sides and the remainder of the analysis holds
with the left hand side being x[N ]− x[0].

[sl[N ], · · · , sl[1]]T ), Fi,k = Dk
i,i is a projection onto the

Fourier coefficients determined by the eigenvalues of W , and
Z̃l = diag(U−1zl) modulates the Fourier measurements for
each block. From Equation (8) we can see that the current
state is simply the sum of L compressed input streams, where
the compression for each block essentially performs the same
compression as a single stream network would.

While the similarity between the multiple and single input
networks seem to indicate that most aspects of the analysis
for the single stream case could be used in the new analysis,
the nature of how the streams are mixed through the feed-
forward matrix Z precludes some of the network choices
available for the single input case. For example, in the single
input case, the feed-forward vector z can be chosen to project
maximally into the eigenspace of W , and choosing a random
z incurs additional logarithmic penalties on the nodes needed
to store long input sequences. Thus, while it may be tempting
to similarly define Z based on the eigenvectors of W , we can
quickly see that such a strategy would provide poor results.
Specifically, if we choose each zl such that every Z̃l = I ,
then we can see that Equation (8) reduces to

x[N ] = U [F ,F , · · · ,F ]
[
sT1 , s

T
2 , · · · , sTL

]T
+ ε,

= UF

L∑
l=1

sl + ε, (9)

which clearly indicates that only the sum of the input streams
can ever be recovered and the different inputs cannot be
distinguished from one another. Instead, we utilize random
feed-forward vectors to allow the network to disambiguate
different input streams with high probability, choosing Z to
be a set of random Gaussian vectors with i.i.d. zero-mean,
variance 1/M entries. In this way, each input stream projects
differently onto the evolving network state.

IV. RIP FOR MULTIPLE INPUTS

Using the approach from the prior section, we can show
a result similar to Theorem 4.1 in [8]. The main differences
involve necessary modifications to the signal model and the
resulting coherence term to accommodate the new signal input
structure. For a single input we could describe the input
model as s = Ψa, i.e. s is sparse in Ψ. We can similarly
describe s̃ = Ψã, i.e. the composite of all input signals
is sparse in a basis Ψ ∈ RNL×NL. This means that each
signal stream can be written as sl =

∑L
k=1 Ψl,kak where

Ψl,k is the {l, k}th N ×N block of Ψ̃. This signal model is
very rich in that a given coefficient can influence multiple
channels, and the network memory can accommodate the
interdependencies. With this model, we find it necessary to
generalize the coherence parameter used in [8] to

µ (Ψ) = max
l,k=1,...,L

max
n=0,...,N−1

sup
t∈[0,2π]

∣∣∣∑N−1
m=0 Ψl,k

m,ne
−jtm

∣∣∣
‖Ψl,k

n ‖2
.

(10)



In the single input case, the coherence parameter focused on
the deviation of the sparsity basis from the Fourier basis. In
this multiple input case, each N × N block must have low
coherence with the Fourier basis. This restriction is reasonable,
since if a single sub-block of Ψ was coherent with the Fourier
basis, then at least one input stream would be sparse in a
Fourier-like basis and hence would be unrecoverable. Since we
are seeking uniform recovery, this situation is not acceptable.
We note that for the case of L = 1, the generalized definition
of coherence reduces to the definition for single inputs.

Theorem IV.1. Suppose NL ≥ M , N ≥ K and N ≥ O(1).
Let U be any unitary matrix of eigenvectors (containing
complex conjugate pairs) and the entries of Z be i.i.d. zero-
mean Gaussian random variables with variance 1

M . For M
an even integer, denote the eigenvalues of W by {ejwm}Mm=1.
Let the first M/2 eigenvalues ({ejwm}M/2

m=1) be chosen uni-
formly at random on the complex unit circle (i.e., we chose
{wm}M/2

m=1 uniformly at random from [0, 2π)) and the other
M/2 eigenvalues as the complex conjugates of these values.
Then, for a given RIP conditioning δ and failure probability
(NL)− log4NL ≤ η ≤ 1

e , if

M ≥ CK
δ2
µ2 (Ψ) log5 (NL) log(η−1), (11)

where the coherence µ (Ψ) is defined as in Equation (10),
A satisfies RIP-(K, δ) with probability exceeding 1− η for a
universal constant C.

The proof of Theorem IV.1 follows very closely to the
proof of Theorem 4.1 in [8]. The main difference is that the
correlations between the Gaussian feed-forward vectors need
to be taken into account. Since these correlations end up only
affecting an expectation for a supremum of a sum of random
variables, the number of input streams only shows up with
the input history length N in the poly-logarithmic factor. This
means that many streams can be stored with only a moderate
increase in the number of nodes. Additionally, the sparsity
number K in Theorem IV.1 represents the total joint sparsity
of all input streams. This implies that if there is significant
structure between inputs, the total sparsity may be very small
compared to the product L N . Finally, we note that when L
= 1, Theorem IV.1 reduces to Theorem 4.1 in [8], indicating
that the single stream result can be considered a special case
of this more general theorem.

V. SIMULATIONS

Since the effects of the sparsity and input length have been
demonstrated in [8], we focus here on showing the effects of
adding input streams to the network. In Figure 2, we show the
results of recovering L length N = 256 input sequences with
a total sparsity of K = 30 from the resulting node values of
a random orthogonal network of size M . The input sequences
were constructed from K random Gaussian coefficients in a
Daubechies-1 basis. We vary the number of input sequences
L, and for each input sequence, we look for the smallest size
M for which Equation 5 fails to recover all the LN inputs.

We see that as L increases, the number of nodes needed for
recovery increase in logarithmically, as demonstrated by the
similarity to the displayed best logarithmic fit.
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Fig. 2. Driving a network with more input sequences has a logarithmic effect
on the number of nodes needed to effectively store the inputs driving the
system. Empirically, as we increase the number of input streams, the number
of nodes needed to recover the signal increases in a logarithmic manner
(shown in solid blue). Shown here are the mean Mfailure over 10 trials, as
well as error bars showing the maximum and minimum Mfailure. The best fit
logarithmic function to this curve (and the maximum and minimum values)
has an exponent of 1.1 (1.08, and 1.077 for the maximum and minimum
respectively).

VI. CONCLUSIONS

In this work we have expanded the STM results for ran-
domly connected networks to networks with multiple input
streams. We considered here the case when the input streams
had joint sparsity structure, (i.e. the composite vector of all
input streams can be sparsely represented in a basis) and used
the properties of random orthogonal networks with Gaussian
feed-forward vectors to show that the network preserves
distances between different joint-sparse input streams. Our
result effectively generalizes earlier work in [8] which only
considers a single input stream. While in this work we focused
on joint-sparse statistics, this is only a single type of low
dimensional structure that can be considered for multiple
streams. Another prominent low-dimensional structure treats
the matrix created by stacking the different inputs as a low-
rank matrix. Essentially, this model treats each input as a linear
sum of a smaller number (R < L) of base input streams.
Future work aims to further expand STM recovery guarantees
to cover these types of input statistics by drawing on recent
advances in low-rank signal recovery [16].
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