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Introduction

Short Term Memory (5TM) in neural systems plays a
vital role in a number of biologically important tasks:

e Prediction

e Classification

* Working memory in biological networks [1]

To understand STM, use Echo State Networks as a proxy.
ESNs use random network connectivity [2].

Stimuli: sjn] € R

Feed-Forward vector: z € R"
Connectivity matrix: W e R"
Neural state: x|n| € R"

sin +1] s|n|

How much of the stimulus content is encoded in the network?
e Previous work capped STM length as N < M [3-4].
e More recent work suggests N > M when the stimulus has
low dimensional structure [5].

We show increased STM for sparse input patterns
using compressive sensing techniques.

Compressive Sensing

Compressive Sensing (CS):
e Allows robust recovery of undersampled signals from
generalized linear measurements [6].
* Relies on distances preservation for compressible signals
(signhal energy concentrates under a linear transform).
o Many biologically relevant signals are compressible [7].
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The 'distance preservation' in CS is the Restricted Isometry
Property (RIP). A satisfies RIP with K, §if

-5 < AW ||,/ ||, < 1+0

for all K-sparse &. CS results state that K-sparsex are robustly
recoverable from y if Asatisfies RIP-(2K,¢) by solving

Z = argmin ||y — AP x|’ + )|z,

A trades off sparsity and data fidelity. The solution error is
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for constants «wand (5, and Xy is the best K term
approximation to .

Showing The RIP

e.g. Random Gaussian matrices satisfy RIP with high probability if
M>CKp’ (¥)d*log(N)

Coherence (W) measures similarity of W and A [8].
Structured systems need more measurements for comparable
results

Can we analyze ESN dynamics using the RIP?

System Model:
Following Ganguli et al.,

x|N| =z Wz Wz

We use the Eigenvalue decomposition W = U DU '
extract the exact effect of the elements of the ESN:

x|N|=UZF's
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Encodinngetwork Decodingv Network
(Storage) (Recovery)

The RIP is satisfied by the ESN for N > M. Thus,
compressible signals are recoverable. Secondary circuits
such as the Locally Competitive Algorithm (LCA) could
decode the network nodes [9].
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The STM exceeds M for different sparsity bases with
K = pN
so long as the coherence is low.

RIP usually shown to hold with high probability for a random matrix

Guarantees on System Model:

If we choose:

eRandom orthogonal W : W'W =1,,
oz2=U1l,
then we can show that

* I''is a subsampled Fourier transform
*RIP holds with high probability if

M>CKp (¥)6 *log (N)

with coherence to the set of all sinusoids.
e Recovery using

s = argmin ||x[N] - UZFs|. + \||¥s],

S

gives the error
s — [Ws], |,
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Note:
e M linear with K, logarithmic with NV
e No error, K-sparse inputs = Perfect recovery

Infinite Length Inputs

Infinite length inputs necessitate

eEigenvalues of W have magnitude g< 1
e Regular decay can be isolated as

N =UZFQs + €

e Effects of older stimuli are noise

Q =diag(|1 q ... ¢"'])
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Using the RIP condition, we can bound the error by
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The error bound in the infinite case has a minimum.
Recalling too much or too little history results in errors

Network Types

Orthogonal networks can have different topologies:
e Fully Connected
e Modular (disjoint fully connected subgroups)
e Small World (sparsely connected groups of fully
connected neurons)

Non-orthogonal W (with same eigenvalue properties)
changes robustness, but not noiseless guarantees.

Feed-forward vector can be chosen at random - adds
a log-squared factor:

M >CKp* (¥)6*log” (N)

If feed-forward vector is mis-aligned with the eigen-
vectors, the effective network nodes decreases.

Conclusions

We analyze the exact dynamics for ESNs using
tools from compressive sinsing. In short:

e RIP shows that stimuli for ESNs are recoverable

e Tractable recovery algorithm (even neural solvers)

e Many bases possible in finite case

e Infinite case demonstrates an optimal recovery
length (best STM length)

e Can account for some deviations from basic
assumptions

Future directions:
e Better understand the role of eigenvalue decay
e Extend results to general low-dimensional
time series embedding
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