
Short-Term Memory Capacity in Recurrent Networks via Compressed Sensing
Adam Charles1, Han Lun Yap1, Christopher J. Rozell1

1Georgia Institute of Technology 

· · ·

LABORATORY FOR

NEUROENGINEERING

Introduction
    Short Term Memory (STM) in neural systems plays a 
vital role in a number of biologically important tasks:
        Prediction
        Classification
        Working memory in biological networks [1]

    To understand STM, use Echo State Networks as a proxy. 
ESNs use random network connectivity [2].

Compressive Sensing
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Finite Length Inputs

How much of the stimulus content is encoded in the network?
        Previous work capped STM length as             [3-4]. 
        More recent work suggests             when the stimulus has
           low dimensional structure [5].
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Recovered Length N
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Empirical Recovery
Theoretical Bound

rMSE = 0.8826

rMSE = 0.0964

rMSE = 0.1823

Stimuli:
Feed-Forward vector:
Connectivity matrix:
Neural state:

    Compressive Sensing (CS):
        Allows robust recovery of undersampled signals from
            generalized linear measurements [6]. 
        Relies on distances preservation for compressible signals 
            (signal energy concentrates under a linear transform).
        Many biologically relevant signals are compressible [7].

    The 'distance preservation' in CS is the Restricted Isometry 
Property (RIP).    satisfies RIP with   ,  if

for all    -sparse   . CS results state that    -sparse    are robustly 
recoverable from     if    satisfies RIP-(2  ,  ) by solving

    trades off sparsity and data fidelity. The solution error is

for constants    and   , and      is the best     term
approximation to    .

Infinite Length Inputs

Conclusions

Network Types

Orthogonal networks can have different topologies:
        Fully Connected
        Modular (disjoint fully connected subgroups)
        Small World (sparsely connected groups of fully
                            connected neurons)

The RIP is satisfied by the ESN for N > M. Thus,  
compressible signals are recoverable. Secondary circuits 
such as the Locally Competitive Algorithm (LCA) could 

decode the network nodes [9].

The STM exceeds M for different sparsity bases with 

so long as the coherence is low. 

    Non-orthogonal      (with same eigenvalue properties)
changes robustness, but not noiseless guarantees.

    Feed-forward vector can be chosen at random - adds
a log-squared factor:

    If feed-forward vector is mis-aligned with the eigen-
vectors, the effective network nodes decreases.

   RIP usually shown to hold with high probability for a random matrix 
e.g. Random Gaussian matrices satisfy RIP with high probability if 

    Coherence           measures similarity of      and     [8].
    Structured systems need more measurements for comparable
           results

    Following Ganguli et al., 

    We use the Eigenvalue decomposition                                 to
extract the exact effect of the elements of the ESN:

If we choose:
    Random orthogonal
    
then we can show that
        is a subsampled Fourier transform
    RIP holds with high probability if  

             
      with coherence to the set of all sinusoids.
    Recovery using 

      gives the error

Note:
         linear with   , logarithmic with 
    No error,   -sparse inputs      Perfect recovery

Infinite length inputs necessitate 
      Eigenvalues of        have magnitude    < 1 
      Regular decay can be isolated as

    
      Effects of older stimuli are noise

Using the RIP condition, we can bound the error by

We show increased STM for sparse input patterns 
using compressive sensing  techniques.

System Model:

Guarantees on System Model:

Can we analyze ESN dynamics using the RIP? 

Noise Signal

Choose

The error bound in the infinite case has a minimum.
Recalling too much or too little history results in errors

    We analyze the exact dynamics for ESNs using 
 tools from compressive sinsing. In short:
        RIP shows that stimuli for ESNs are recoverable        
        Tractable recovery algorithm (even neural solvers)
        Many bases possible in finite case
        Infinite case demonstrates an optimal recovery 
          length (best STM length)
        Can account for some deviations from basic 
          assumptions

Future directions:
        Better understand the role of eigenvalue decay
        Extend results to general low-dimensional
          time series embedding

(Storage) (Recovery)
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