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ABSTRACT

This paper presents an algorithm for an `1-regularized Kalman fil-
ter. Given observations of a discrete-time linear dynamical system
with sparse errors in the state evolution, we estimate the state se-
quence by solving an optimization algorithm that balances fidelity
to the measurements (measured by the standard `2 norm) against the
sparsity of the innovations (measured using the `1 norm). We also
derive an efficient algorithm for updating the estimate as the system
evolves. This dynamic updating algorithm uses a homotopy scheme
that tracks the solution as new measurements are slowly worked into
the system and old measurements are slowly removed. The effective
cost of adding new measurements is a number of low-rank updates
to the solution of a linear system of equations that is roughly propor-
tional to the joint sparsity of all the innovations in the time interval
of interest.

1. INTRODUCTION

In this paper we consider the classical problem of estimating a time-
varying vector described by the discrete-time linear dynamical sys-
tem

yi = Aixi + ei (1)
xi+1 = Fixi + wi.

At each time step i = 1, 2, . . ., we observe M measurements yi ∈
RM of the unknown vectors xi ∈ RN through the system1 Ai; these
measurements are corrupted by a noise vector ei. The N × N ma-
trix Fi models the expected motion of xi to xi+1; as the motion may
drift from this expected behavior, we allow for an error wi to be in-
corporated at each step. We will assume throughout that the motion
matrices Fi are well-conditioned enough that we may confidently
calculate F−1

i . No such assumption is made for the Ai, which we
will generally consider as underdetermined (M < N ).

The equations in (1) are solved in the least-squares sense by
the Kalman filter [1, 2]. Given the sequence of measurements
y1, . . . , yk, and starting from an initial estimate x̂0 of the vector at
time i = 0, we can estimate x1, . . . , xk by solving the following
optimization program

minimize
x1,...,xk

k∑
i=1

τi‖xi − Fi−1xi−1‖22 +

k∑
i=1

λi‖Aixi − yi‖22. (2)
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1For convenience, we will assume that each Ai has the same number of
rows M . Everything we present can easily be generalized to the case where
we have a different number of observations at each step.

The τi and λi above are regularization parameters that we tune based
on our relative confidence in the measurement and prediction errors
— if the error vectors ei and wi are independent and identically dis-
tributed Gaussian noise vectors, then optimal choices of these pa-
rameters are based on the variances of the entries in this noise vector.

The Kalman filter owes its status as one of the pillars of sta-
tistical signal processing to the fact that the solution to (2) can be
computed recursively. Say we have solved (2) after k time steps, and
denote the estimate of xk at this point as x̂k|k. Then given a new
set of measurements yk+1, we can efficiently update the estimate
x̂k+1|k+1 of the new current state given only the previous estimate
x̂k|k. If Ak+1 has M rows, then the cost of this low-rank update is
essentially the same as M matrix-vector multiplies. Estimates for
previous values of xi for i < k+1 can be updated by working back-
wards (“smoothing”), with each step requiring a similar low-rank
computation.

In this paper, we show how `1 regularization can be incorporated
into the Kalman filtering framework. The motivation for this is that
there are many applications where we expect the innovations in the
vector xi to be sparse. Our model replaces the second equation in
(1) with

xi+1 = Fixi + si (1’)

where si has only a few significant entries at unknown locations
which are possibly different at each time instance. In place of the
optimization program (2), we solve2

minimize
x1,...,xk

k∑
i=1

τi‖xi − Fi−1xi−1‖1 +
1

2

k∑
i=1

‖Aixi − yi‖22, (3)

and show how the solution to this program can be efficiently updated
as k increases. Our algorithm maintains the optimal solution over
a sliding window of time instances, and yields the jointly optimal
solution given the measurements inside the frame and the estimate
from the last frame out, which in this case is the initial estimate x̂0.

There have been several previous works with the same broad
goal of incorporating discrete dynamics into sparse approximation,
see in particular [3] and [4]. The formulation we give in this pa-
per (see Section 2) varies slightly from those in these references,
but our most important contribution is an efficient updating scheme
for moving from one solution to the next as more observations are
taken. This updating scheme, while not quite as simple as in the
least-square formulation, has the same recursive spirit as the original
Kalman filter, and similarly reduces to a series of low-rank updates.

The paper is organized as follows. In section 2 we discuss `1-
regularized inverse problems and the formulation of our proposed
dynamic recovery scheme. In section 3 we present a homotopy

2Note that we are weighting all of the measurements the same, leaving
out the λi (although this is an easy extension.)



based dynamic updating algorithm for our proposed scheme. In sec-
tion 4 we present some experimental results to demonstrate the per-
formance of our scheme in estimation and tracking in the presence of
sparse variations and study the performance gains from the dynamic
update.

2. SPARSE VARIATION ESTIMATION

We start with a brief discussion of `1 regularization for static inverse
problems. Suppose we have observed y = Ax0 + e, and suppose
that we have knowledge that the underlying vector x0 is sparse. One
way to take advantage of this sparsity when estimating x0 from y
is by searching for the vector with smallest `1 norm that provides a
reasonable explanation for the measurements. Given y, we solve the
following basis pursuit denoising (BPDN) [5] problem

minimize
x

τ‖x‖1 +
1

2
‖Ax− y‖22. (4)

For measurement matrices that obey certain incoherence conditions,
(4) comes with a number of performance guarantees [6–10]. In par-
ticular if x0 is sparse enough and there is no noise, (4) recovers x
exactly as τ → 0 even though A is underdetermined, and the recov-
ery is stable in the presence of noise with an appropriate choice of
τ .

The optimization program (4) does not have a closed-form so-
lution. It is typically solved using some type of iterative descent al-
gorithm. Recently, recursive schemes based on homotopy have been
proposed to update the solution to (4) when new measurements have
been observed [11–13] (i.e. entries are added to y and rows are added
to A) or when y is replaced with a completely new set of measure-
ments of a closely related signal while keeping A constant [12, 14].
These algorithms are derived by working the new measurements into
(or out of) the optimization program gradually, and tracking how the
solution changes. The problems are formulated such that the move-
ment from one solution to the next can be broken down into a series
of linear steps, with each link traversed using a low-rank update.

Our program (3) might be considered the dynamic version of
(4). We start by reformulating the `1 version of the Kalman filter
in terms of the sparse innovations si; we will explicitly estimate the
si and then turn these into estimates for the xi using the recursive
equation x̂i = Fi−1xi−1 + ŝi (recall that we are working from a
fixed initial estimate x̂0). The sparse innovations can be written as

s1

s2

...
sk−2

sk−1

 =


I 0 · · · 0 0
−F1 I · · · 0 0

...
...

. . .
...

...
0 0 · · · −Fk I



x1

x2

...
xk−2

xk−1

−

F0x0

0
...
0


≡ s = Fx− u. (5)

Note that

F−1 =


I 0 0 · · · 0 0
F1 I 0 · · · 0 0
F2F1 F2 I · · · 0 0

...
...

...
. . .

...
...

Fk ... 1 Fk ... 2 Fk ... 3 · · · Fk I

 ,

where Fk ... l = FkFk−1 · · ·Fl. Since x can be written as x =

F−1(s + u), we have the following equalities

Ax = AF−1s +AF−1u,

k∑
i=1

‖Aixi − yi‖22 = ‖Ax− y‖22 = ‖AF−1s− (y −AF−1u)‖22,

where

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ak

 and y =


y1

y2

...
yk

 .
Therefore, we can write the optimization problem in (3) with vari-
ables x1, . . . , xk, in the form of following optimization problem
with variables s1, . . . , sk,

minimize
s1,...,sk

k∑
i=1

τi‖si‖1 +
1

2
‖AF−1s− ỹ‖22, (6)

where ỹ = y −AF−1u, and u is as in (5). The optimization prob-
lem in (6) is a weighted BPDN problem. We can solve this problem
to get the sparse solution ŝ, which in turn gives us an estimate for x.

Note that the size of the problem in (6) increases as we add new
measurements in the working set A. We will work on a sliding win-
dow, considering a fixed number P of time instances jointly. The
desired length and instances of working system can be chosen by
appropriately selecting the indices in (3) and (6). For example, sup-
pose we want to keep the size of working system fixed at PM×PN ,
and we have solved (6) at time P . Now we want to add M new
measurement to the system and remove the oldestM measurements.
Therefore, we solve (6) with i = 2, . . . , P + 1. The main ques-
tion here is whether we can quickly update the solution for (6) with
index set i = 2, . . . , P + 1 given a previously calculated solution
for i = 1, . . . , P , instead of requiring to solve it from scratch. For-
tunately, the answer to this question is affirmative, and in the next
section we devise a dynamic updating scheme to perform this task.

3. DYNAMIC UPDATING ALGORITHM

In this section we present an algorithm to dynamically update the so-
lution of (3) and (6) as measurements are added or removed. To per-
form this task, we formulate a homotopy path between the original
and updated solutions, similar to the ones used in [12], and demon-
strate how this path can be traversed.

Suppose we have solved (6) for time indices i = 1, . . . , P , and
call the estimate for the innovations ŝ and the corresponding state
estimate x̂ = F−1(ŝ + u) (which solves (3)). We break down the
shift to the new time interval of interest to i = 2, . . . , P + 1 into a
number of small steps, each with a predictable effect on the solution.
We first remove the M rows corresponding to A1 and N columns
corresponding to the first innovation s1 fromAF−1. Following this,
N new columns corresponding to the new innovation sP+1 are ap-
pended to AF−1. Finally, a new set of M rows are added corre-
sponding toAP+1. Below we describe how to track the solution ŝ to
our `1 minimization program as the system undergoes these transfor-
mations. These paths between solutions will break down into a se-
ries of linear segments, each of which can be traversed very quickly.
The computational cost of the algorithm scales with the number of
segments in the path, which in turn is determined by the number of
active elements in the set of innovations. The update will be efficient



if state solution changes only at small number of locations over the
course of its evolution.

Denote the current state solution as x̂ = [x̂1, x̂2, · · · , x̂P ].
Our first claim is that if we remove A1 and x1 from the system and
solve (3) for the index set i = 2, . . . , P , using F1x̂1 as the initial
estimate of x2, then the solution remains as [x̂2, · · · , x̂P ]. This
property can be verified by looking at the following optimality con-
ditions of (3), which hold for all i = 1, . . . , P ,

AT
i (Aixi − yi) +

P−1∑
j=i+1

FT
i · · ·FT

j−1A
T
j (Ajxj − yj) = −τui

ui(k) ∈

{
±1 if [xi − Fi−1xi−1](k) 6= 0

[−1, 1] if [xi − Fi−1xi−1](k) = 0.
(7)

Note that the optimality conditions have a recursive relationship:
if the solution x̂2 is not disturbed by removing x1 from the sys-
tem, then all the subsequent solutions x̂3, . . . , x̂P must remain fixed.
Since (7) for i = 2 is already satisfied with x1 = x̂1 and x2 = x̂2,
our solution does not change if we remove x1 from the system and
use its estimate to form the estimate of x2. It is clear that this argu-
ment extends beyond the first set of measurements. We can remove
measurements up to any index 1 ≤ j < P and use Fj x̂j as the initial
estimate for xj+1 without changing the remaining solutions.

Let us now look at what happens when we add a new signal in-
stance xP+1 into the system. Note that it does not affect the old solu-
tion either. This can be seen by looking at (3), where increasing the
end index for prediction error term from P to P + 1 adds xP+1 into
the working system. Before adding any measurements for xP+1, its
optimal solution will be x̂P+1 = FP x̂P , which implies that initial
value for ŝP+1 = 0.

With the stale measurements removed and our innovation ini-
tialized to ŝP+1 = 0, we are ready for the main task of updating all
of the innovation estimates ŝ2, . . . , ŝP+1 as we introduce the new
measurements yP+1 into the system. We do this update using a ho-
motopy continuation. The basic idea in the homotopy continuation
is to transform a given optimization problem into a related problem,
for which the solution is either already available or can be computed
easily. The continuation from the transformed problem to the origi-
nal problem can then be done in a series of low-complexity updates.

Let us assume that A, F−1, x, s and y denote the system pa-
rameters corresponding to the new time window i = 2, . . . , P + 1.
We compute the new ỹ = y − AF−1u, where u is in turn com-
puted from F1x̂1 in (5), and set ŝ1 = [ŝ2, . . . , ŝP+1]. Denote first
(P − 1)M rows of the new system matrix as U, the last M rows
of the matrix as B, the first (P − 1)M elements of ỹ as ṽ, and the
lastM elements as w̃. To make the exposition as simple as possible,
we assume that τi = τ for all i. We can now move from the old so-
lution to the new by slowly increasing ε in the following homotopy
formulation:

mins τ‖s‖1 +
1

2
‖Us− ṽ‖22 +

1

2
‖Bs− εw̃− (1− ε)wold‖22, (8)

where wold = Bŝ1. At ε = 0, ŝ1 is the solution of (8). As we
increase ε towards 1, the solution of (8) approaches the solution of
(6) for the index set i = 2, . . . , P + 1.

We traverse the solution path parameterized by ε in (8) using the
same basic principles detailed in [12]. The solution s? of (8) at any
given value of ε must obey the following optimality conditions

UT
Γ (Us? − ṽ) + BT

Γ (Bs? − εw̃ − (1− ε)wold) = −τz (9)

‖UT
Γc(Us? − ṽ) + BT

Γc(Bs? − εw̃ − (1− ε)wold)‖∞ < τ,
(10)

where Γ denotes the support of s?, BΓ is the matrix formed from
the columns of B indexed by Γ, and z is the sign sequence of s? on
Γ. Notice that s follows a piecewise linear path as ε varies; this path
changes direction when either an element of the solution shrink to
zero, or the inequality constraint (9) is violated (that is, the support
of the solution changes). Suppose we are at a solution sk to (8) with
support Γ and signs z at some given value of ε = εk between zero
and one. As we increase ε by an infinitesimal amount to εk + θ, the
solution moves to sk+ = sk + θ∂s, where

∂s = (UTU + BTB)−1BT (w̃ −w0). (11)

Moving in the direction of ∂s by increasing the step size θ, we even-
tually hit a critical point where either one of the entries in sk shrinks
to zero or one of the constraints in (10) becomes active (equal to
τ ). The smallest amount we can move ε so that the former is true is
simply

θ− = min
j∈Γ

(
−sk(j)

∂s(j)

)
+

, (12)

where min(·)+ denotes that the minimum is taken over positive ar-
guments only. For the latter, set

pk = UT (Usk − ỹ) + BT (Bsk − εkw̃ − (1− εk)wold) (13a)

dk = (UTU + BTB)∂s−BT (w̃ −wold). (13b)

We are now looking for the smallest stepsize ∆ε so that pk(j)+∆ε ·
dk(j) = ±τ for some j ∈ Γc. This is given by

θ+ = min
j∈Γc

(
τ − pk(j)

dk(j)
,
τ + pk(j)

−dk(j)

)
+

. (14)

The stepsize to the next critical point is

θ = min(θ+, θ−). (15)

With the direction ∂s and stepsize θ chosen, the next critical
value of ε and the solution at that point become

εk+1 = εk + θ, sk+1 = sk + θ∂s.

The support for new solution sk+1 differs from Γ by one element.
Let γ− be the index for the minimizer in (12) and γ+ be the index
for the minimizer in (14). If we chose θ− in (15), then we remove
γ− from the support Γ and the sign sequence z. If we chose θ+ in
(15), then we add γ+ to the support, and add the corresponding sign
to z. This procedure is repeated until ε = 1.

The main computational cost at every homotopy step comes
from solving a |Γ| × |Γ| system of equations to compute the di-
rection in (11), and two matrix-vector multiplications to compute
the dk for the stepsize. Since the support changes by a single ele-
ment at every homotopy step, the update direction can be computed
using rank-1 update methods [15]. Furthermore, the lower block-
triangular structure of U and B can be exploited to further expedite
the processing and reduce the storage requirements.

4. EXPERIMENTS

In this section we present some initial experimental results to demon-
strate the performance of our proposed scheme. We first analyze the
performance of (3) for estimation and tracking of signals in the pres-
ence of sparse variations. Next we analyze the advantage of our pro-
posed dynamic updating scheme over the standard BPDN homotopy
solver.
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Fig. 1: (Left) Noiseless measurements. (Right) Noise at 30dB SNR
Comparison of SER (in dB) for different values of K and P .

In our experimental setup we follow the dynamical system
model in (1) and (1’), taking Fi as the identity for all i and every
Ai as a random matrix whose entries are independently chosen
from the standard Normal distribution. Our initial signal x0 can
be an arbitrary vector. We generate every sparse variation vector
si independently by selecting K locations at random and assigning
them amplitudes following Normal distribution. We synthesize the
measurements yi and present them as input into our algorithm along
with the initial signal estimate x̂0 and regularization parameter τ .

In order to evaluate the estimation and tracking performance of
(3), we solved (6) for the same dynamical system using different
values of P and innovation sparsity K. We initialized x0 as a vector
whose all entries are normally distributed and used zero vector as
x̂0. The recovery results for a system with N = 128 and M = 64
are plotted in Figure 1, with noiseless measurements (left plot) and
in the presence of Gaussian noise at 30dB (right plot). The value
at each point is recorded by averaging the results of 10 simulations,
each run over 500 time instances of the system. The performance
metric is the signal to reconstruction error ratio (SER) defined as

SER = 20 log10

‖x‖2
‖x− x̂‖2

, where x denotes the original signal and

x̂ denotes the reconstructed signal. Note that the signal estimation
improves considerably as we increase P . The superior performance
with larger values of P is a reflection of better signal estimation and
tracking of the sparse changes in the signal dynamics.

Next we compare the cost of solving (6) from scratch using stan-
dard BPDN homotopy [16, 17] with our proposed dynamic updat-
ing algorithm. We compare the number of homotopy steps taken
by each method for solving (6), using the experimental setup men-
tioned above, except here we initialize x0 as a K-sparse vector. We
have tabulated the average number of homotopy steps taken by both
solvers for different values of P in Table 1. For small values of
P both methods take approximately the same number of homotopy
steps to solve (6). However, for larger values of P , the number of dy-
namic update steps is significantly smaller than the number of BPDN
homotopy steps.

5. CONCLUSION

We have presented an `1-regularized algorithm for estimating time-
varying signals with sparse prediction errors in the settings of a lin-
ear dynamical system. While a globally optimal solution would in-
clude all previous states, the computational complexity of solving
such system would be overwhelming. We presented a computation-
ally feasible algorithm which works over a sliding window of time
instances, and can dynamically update the solution using homotopy
updating scheme. Utilizing this algorithm, additional dynamical sig-
nal models that are not covered by the conventional Kalman filter,
can be estimated in a precise and efficient manner.

Table 1: Dynamic update comparison with BPDN homotopy.

BPDN steps Dynamic update steps

P = 1
K = 1 4 5
K = 5 28 29
K = 10 79 80

P = 2
K = 1 6 6
K = 5 37 40
K = 10 99 99

P = 5
K = 1 16 8
K = 5 105 71
K = 10 281 170

P = 10
K = 1 38 11
K = 5 265 108
K = 10 575 207
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