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ABSTRACT

Tracking time-varying signals is an important part of many engi-
neering systems. Recently, signal processing techniques have been
developed to improve tracking performance when the signal of in-
terest is known a-priori to be sparse. Leveraging sparsity, however,
depends heavily on gridding the space, treating the signal as a col-
lection of active or inactive pixels in an image, rather than tradi-
tional methods which track the continuous spatial coordinates. Us-
ing the dynamics constraint in this setting is challenging, as a model
which approximately predicts target location may result in seem-
ingly large errors, as measured by the `p-norm typically used in such
algorithms. To take advantage of approximate spatial priors without
introducing unnecessary penalties, we present a tracking algorithm
using the earth-mover’s distance (EMD) as an alternate dynamics
regularization term. We note that while requiring a higher computa-
tional burden, the EMD can more effectively utilize target location
prediction when the space is gridded.

Index Terms— Dynamic Filtering, Earth-mover’s Distance,
Compressive Sensing, Kalman Filtering

1. INTRODUCTION

One of the classical problems in signal processing concerns the ef-
ficient tracking of temporally changing signals over time. Often
termed dynamic filtering, these algorithms use a current set of mea-
surements and a prediction of the underlying signal, given by a dy-
namical model, to infer the current signal as accurately as possi-
ble. Mathematically, we assume that for an unknown temporally-
evolving signal xn ∈ RN , our measurements are taken as

yn = Gnxn + εn, (1)

where yn ∈ RM are linear measurements taken at time n via the
measurement matrixGn ∈ RM×N , and εn ∈ RM is potential mea-
surement noise. Additionally, we use what knowledge is available of
the temporal evolution of xn by modeling the dynamics as

xn = fn(xn−1) + νn, (2)

where fn : RN → RN is a function that portrays our knowledge of
the signal dynamics and νn ∈ RN is the model error, often termed
the innovations. Classically, the Kalman filter [1, 2] has provided
an optimal and efficient inference methodology for problems where
the measurement and dynamics model errors are Gaussian, and the
measurements and dynamics function are linear.

This work was supported in part by NSF grant CCF-1409422 and the
James S. McDonnell Foundation.

In addition to the signal structure imbued by the dynamics pro-
cess, modern signal processing also seeks to leverage additional a-
priori known signal structure inherent to many signal classes to reg-
ularize inverse problems and improve the performance of tracking
algorithms. Specifically, the concept of sparsity, which models the
signal as having few non-zero elements in a linear representation,
has gained traction in the tracking community [3–10]. Algorithms
designed to leverage sparsity in tracking applications have typically
focused on problems where the dynamics are accurate in terms of an
`p metric. In some applications, however, such innovations models
can actually mislead inference procedures. In particular, we consider
in this work the case where the innovations are inherently spatial er-
rors, i.e., dynamics models that can predict the location of targets in
an image to within a few pixels. In this scenario, `p-norm based er-
ror metrics may unjustly penalize even very small spatial deviations.
For example, in an image consisting of a single active target, an es-
timate that places the active pixel very close to the true location is
penalized as much as one that places it far away.

Thus we focus here on time-varying signals where the dynamics
model essentially represents small movement of the data with respect
to a distance function. Instead of the `p dynamics inducing norms
used in the literature, we move towards using a more natural regular-
izer: the earth mover’s distance (EMD) [11]. The EMD provides a
natural way to describe small spatial errors. Specifically, in this work
we describe a tracking algorithm that uses the EMD as a regulariza-
tion term that conveys dynamic information over time. Additionally,
we discuss some of the computational benefits of using the EMD dis-
tance for tracking sparse signals. Finally, we empirically explore the
improvement of EMD dynamics regularization over current methods
via target tracking simulations.

2. BACKGROUND

2.1. Dynamic Signal Tracking

Traditional tracking algorithms are predominantly based on the
Kalman filter [1]. Succinctly, the Kalman filter can be described as
a least-squares solution at each time step

x̂n = arg min
x

[
‖yn −Gnx‖22,Rn

+

‖x− Fnx̂n−1‖22,(Qn+FnPn−1FT
n )

]
(3)

where x̂n−1 and Pn−1 are the estimate of the previous time step
and its covariance, and Qn and Rn are the covariances for the in-
novations and measurement noise. The Kalman filter has been par-
ticularly popular because of its optimality guarantees under linear
assumptions on the measurements and dynamics and Gaussian as-
sumptions on the signal, innovations and measurement noise.



Many current popular signal models, however, differ greatly
from Gaussian assumptions. One particularly popular model that
has found use in many applications is sparsity. In the sparsity model
we describe our signal as the linear combination of few elements
from a large dictionary

xn = Ψa, (4)

where Ψ ∈ RN×P is the dictionary of atoms and a is the sparse
coefficient vector containing mostly zeros. This model has increased
the performance of many signal and image processing tasks [12].

One of the most widely used algorithms for recovering the
sparse coefficients from noisy measurements is basis pursuit denois-
ing (BPDN) [13] (also known as the LASSO [14]) which involves
solving the optimization problem

ân = arg min
a

‖yn −GnΨa‖22 + λ‖a‖1. (5)

Here, the first term requires the solution to agree with the measure-
ments, and the second term encourages sparse solutions. The param-
eter λ represents the trade-off between fidelity and sparsity. BPDN is
appropriate for static problems, but does not utilize information pro-
vided by the dynamics model in tracking scenarios (e.g., in [3–10]).
A natural extension to BPDN, basis pursuit denoising with dynamic
filtering (BPDN-DF) [10, 15] involves a similar optimization prob-
lem with the addition of a tracking regularizer:

ân = arg min
a

‖yn −GnΨa‖22 + λ‖a‖1

+γ ‖Ψa− f(x̂n−1)‖pp . (6)

The additional third term requires our estimated coefficients to agree
with those predicted by the dynamics function f . The parameter
γ is adjusted according to the accuracy of our dynamics model. We
note here that the dynamics regularizer penalizes according to the `p-
norm. Thus BPDN-DF incurs problems associated with insensitivity
to the spatial location of the coefficients. More recent methods have
sought to use variance information native to sparsity to induce addi-
tional robustness [15]. One such example, re-weighted `1 dynamic
filtering (RWL1-DF) accomplishes this task by iteratively solving a
weighted BPDN estimate

ân = arg min
a

‖yn −GnΨa‖22 +
∑
i

λi|ai|, (7)

and updating the weights based on a combination of dynamics and
measurement information

λi =
α

β + |âi|+ γ|[ΨT f(x̂n−1)]i|
, (8)

for parameters α, β and γ. RWL1-DF allows for sparsity preserving
deviations from an erroneous dynamics model [15], however RWL1-
DF is still incurs the same spatial location insensitivity problems as
BPDN-DF, as the spatial relationships between coefficients remain
unaccounted for.

2.2. Earth-Mover’s Distance

The earth-mover’s distance (EMD), denoted here by dEMD(x, x̃), is
a metric that was originally devised as a method to compare proba-
bility distributions, however in recent years has been applied more
generally to inverse problems [11,16,17]. If the elements of a vector
are considered as “mass”, the EMD is the minimum work (i.e., mass

times displacement) needed to obtain one vector from the other. In
one dimension, the EMD is trivial to calculate, as one can simply
start at the beginning of a vector and move the difference between
the two vectors’ elements down to the next index until the last in-
dex is reached. In higher dimensions, however, the EMD is more
difficult to calculate, and instead must be written as an optimization
program. Specifically, dEMD(x, x̃) can be written as the minimum
value obtained by solving the linear program

min
F

∑
i,j

Fi,jri,j s.t. Fi,j ≥ 0

∑
j

Fi,j ≤ xi∑
i

Fi,j ≤ x̃j∑
i,j

Fi,j = min(
∑
i

xi,
∑
j

x̃j), (9)

where Fi,j are flow variables which represent the mass moved from
xi to x̃j , and ri,j is the associated “displacement” cost. In this lin-
ear program, the first line represents the minimization of the total
work (sum of mass times displacement) subject to non-negativity
constraints on the flow, the second line indicates the constraint that
no more mass can come from a pixel than the mass already there, the
third line indicates the constraint that no more mass can be placed in
a pixel than the mass required, and the final line indicates the con-
straint that the total mass moved must be the minimum mass of the
two vectors. The final constraint here is particularly important, as
that constraint prevents the trivial solution of all zero flows. While
the EMD has been used in linear inverse problems (e.g., in lieu of the
`2-norm in BPDN [11] or to regularize differences between columns
of a sparse matrix [16]), the utility of the EMD for tracking applica-
tions has yet to be explored.

3. DYNAMIC FILTERING WITH THE EMD

Using the EMD as a dynamics regularizer follows the same overall
strategy as in BPDN-DF. In particular we wish to solve

x̂n = arg min
x

‖yn −Gnx‖22 + λ‖x‖1 + γdEMD(x, x̃), (10)

where λ and γ are again pre-set trade-off parameters and x̃ =
f(x̂n−1) is the predicted signal using the dynamics model. The idea
here is that the EMD distance will be more forgiving to innovations
that are often encountered in spatial tracking scenarios.

3.1. Optimization Routine

Since the computation of the EMD is itself an optimization program,
solving (10) is more involved than solving the BPDN-DF optimiza-
tion (6). By substituting the EMD distance in (10) with the cor-
responding optimization program, we can see that to solve EMD-
regularized BPDN we need to optimize over two sets of variables:
the signal of interest x and the EMD flow variables F ,

x̂n = arg min
x

‖yn −Gnx‖22 + λ ‖x‖1 + γmin
F

∑
i,j

Fi,jri,j

s.t. Fi,j ≥ 0∑
j

Fi,j ≤ xi
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Fig. 1. One-step recovery results for EMD-regularized BPDN.
When given a prediction of the true signal that is erroneous by small
spatial extents (i.e., predicted pixels are close, but not precisely at
their true location in the image), the EMD-regularized BPDN esti-
mates the signal more accurately from many fewer measurements.

∑
i

Fi,j ≤ x̃j∑
i,j

Fi,j = min(‖x‖1, ‖x̃‖1). (11)

The objective here remains convex, and all the constraints, save
the equality constraint, are linear. To avoid the non-convex term
min(‖x‖1, ‖x̃‖1), we note that at the solution, either

∑
i,j Fi,j =

‖x̃‖1 or
∑

i,j Fi,j = ‖x‖1 holds. We can thus solve the optimiza-
tion (11) twice, replacing the final constraint with the two possible
equality constraints, and take the solution with the smaller objective.
While requiring two optimizations, this solution allows for EMD
regularization in N -dimensional settings.

3.2. Computational Considerations

Solving the optimization in (11) can be computationally cumber-
some, as we must solve for both the N signal variables, and the
N2 flow variables. When tracking sparse signals, however, we can
reduce the overall number of variables in the optimization. Consider
the second constraint in (11). On the left-hand side of this condi-
tion is the summation along the rows of the flow matrix F , and on
the right is the signal prediction x̃. Since all flow variables are non-
negative, and few elements of x̃ are non-zero, we have that the sum
of a large number of the flow variables of F must equal zero: indi-
cating that any row not corresponding to an active element of x̃must
be populated entirely of zeros. This means that the actual number of
variables to be optimized is N + NK̃, where K̃ is the sparsity of
x̃. Additionally, we can mitigate the cost of having to run the opti-
mization twice by seeding the second optimization program with the
solution to the first. As a final note, while the optimization (11) can
be implemented in general solver environments, (e.g., CVX [18,19]),
we have also implemented our method using the efficient alternating
directions method of multipliers (ADMM) [20].

4. RESULTS

We first test our EMD-based tracking scheme by focusing on a single
time step tracking simulation with generated 10 × 10 pixel images
containing five targets (i.e., pixels with value 1 in an otherwise all-
zero image). We then generate a prediction of the target locations
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Fig. 2. One-step recovery error as a function of the sparsity level
K. For any given value of K, EMD-regularized BPDN recovers the
original signal with higher fidelity than competing algorithms.

Fig. 3. Example recovery using EMD-regularized BPDN. The pre-
diction of the true pixel locations is shown (top left) as well as the
true pixel locations (top right). The recovered pixel locations via the
EMD-regularized BPDN (bottom left) clearly portrays the true pixel
locations much more accurately than the nearest competitor which
we simulated, BPDN (bottom right).

consisting of an image wherein the targets locations are predicted to
within one pixel of the true location, providing approximate loca-
tion information. We recover the target locations using BPDN with
EMD regularization as well as BPDN, BPDN-DF and RWL1-DF for
comparison. In this and the following experiments, the parameters λ
and γ are found using a grid search, and are chosen to yield the best
possible performance for each algorithm. The relative mean-squared
error between the image of inferred targets and the true target distri-
bution, as calculated by ‖x̂ − x‖22/‖x‖22, is shown in Figure 1. We
notice that as we reduce the number of measurements of our signal,
the EMD-regularized BPDN recovers the target locations with much
higher fidelity. It is also interesting to note that standard BPDN ac-
tually outperforms the other two tracking algorithms, BPDN-DF and
RWL1-DF. This is because the tracking regularizer in each of these
algorithms uses the `p-norm which assigns the same penalty regard-
less of the location of the coefficients. Thus, the tracking term in fact
misguides the recovery. In addition to varying the number of mea-
surements, we also investigate how the recovery error varies with the
sparsity level by varying the number of targets for a fixed number of
measurements. Specifically, we fix the number of measurements to
M = 20 and vary the number of targets from K = 1 to K = 10.
The resulting rMSE values in Figure 2 demonstrate that for a given
number of measurements, BPDN-EMD successfully tracks more tar-
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Fig. 4. Comparison of EMD-regularized BPDN in a detection task. A hit occurs if the support of the estimate contains the true support and
the estimated coefficients on the true support exceed a given threshold. Similarly, we declare a false alarm when coefficients outside of the
true support exceed this threshold. Similar to the rMSE calculation, the EMD-BPDN is better able to detect the support at lower measurement
numbers than BPDN, BPDN-DF and RWL1-DF. Interestingly, we note that despite BPDN-DF having a worse rMSE than BPDN, the detection
performance is much more comparable for the two algorithms, indicating that the model mismatch through the dynamics term is consistently
contaminating BPDN-DF with many small erroneous values.
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Fig. 5. Recovery of simulated moving pixels. We simulate a sequence of targets moving with pseudo-brownian-motion (active pixels move
randomly at each time step to a neighboring location) and recover the sequence with various algorithms. The lowest relative mean-squared
error is achieved by the EMD-regularized BPDN, followed by BPDN and RWL1 (which do not use any dynamics information.) BPDN-DF
and RWL1-DF are given dynamics information that incurs a high penalty given the assumed innovations model, and thus their performance
is worse than even the non-dynamics aware inference schemes.

gets than BPDN-DF or RWL1-DF.

As an example of the resulting inferred images, Figure 3 shows
the image of true target locations, the image of target prediction,
the EMD-based recovery and the BPDN estimate. Clearly using the
EMD as a regularizer results in an estimate that better captures the
target distribution in the image over the next-best estimator that we
implemented. To further explore the utility of the EMD, we also
consider this optimization scheme as a detection algorithm. We look
at both the probability of false alarms and the probability of correct
detection. As the number of measurements gets smaller, the EMD
correctly detects all the correct target locations with minimal false
alarms, as is shown in Figure 4.

Finally, we test the EMD-based dynamic filtering on target
tracking over a longer sequence. We simulate targets that move
around randomly, with the constraint that the targets do not move
more than one pixel in each direction at each time-step. Again we
use 10×10 images with 5 targets and we fix the number of measure-
ments toM = 20. As shown in Figure 5, under these conditions, the
EMD-regularized BPDN outperforms both static algorithms (BPDN
and RWL1) as well as dynamic algorithms incapable of handling
such innovations (BPDN-DF and RWL1-DF).

5. CONCLUSIONS

In this work we explore the utility of the EMD in the context of
tracking algorithms. Specifically, we describe an optimization pro-
gram that leverages the EMD as a regularizer and empirically ex-
plore its performance on signal estimation when approximate spatial
data is available. We conclude that the EMD shows promise in in-
creasing the performance for a number of image processing appli-
cations where tracking objects through a scene is desired. Thus it
a worthwhile goal to further explore EMD-regularized trackers. To
mitigate the inefficiency of solvers including the EMD, we briefly
discuss the benefits of sparsity in reducing the computational bur-
den. Other avenues, however, should be explored as well, such as
continued work on our ADMM solver. Additionally, the EMD as-
sumes non-negative signals, a restriction that should be addresses to
make EMD-based tracking more widely applicable. As a final note,
our experiments used a grid-search to set the optimization program
parameters. Many alternatives exist for parameter selection (e.g.,
Bayesian type-II maximum likelihood,) which can be explored as
well. Further inquiry into the most efficient parameter selection tech-
nique for EMD-based tracking will be particularly important given
the increased computational cost of the EMD.



6. REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and pre-
diction problems,” Transactions of the ASME-Journal of Basic
Engineering, vol. 82, no. D, pp. 35–45, 1960.

[2] S. Haykin, “Kalman filters,” in Kalman Filtering and Neural
Networks, S. Haykin, Ed. John Wiley & Sons, Inc., 2001, pp.
1–22.

[3] A. S. Charles and C. J. Rozell, “Spectral superresolution of
hyperspectral imagery using reweighted `1 spatial filtering,”
IEEE Geoscience and Remote Sensing Letters, vol. 11, no. 3,
pp. 602–606, March 2014.

[4] N. Vaswani, “Kalman filtered compressed sensing,” Proc of
ICIP 2008, pp. 893–896, 2008.

[5] A. S. Charles and C. J. Rozell, “Convergence of basis pur-
suit de-noising with dynamic filtering,” Proceedings the IEEE
GlobalSIP, Dec 2014.

[6] Z. Zhang and B. Rao, “Sparse signal recovery with tempo-
rally correlated source vectors using sparse bayesian learning,”
IEEE Journal of Selected Topics in Signal Processing, no. 99,
pp. 1–1, 2011.

[7] M. S. Asif, L. Hamilton, M. Brummer, and J. Romberg,
“Motion-adaptive spatio-temporal regularization (master) for
accelerated dynamic mri,” Magnetic Resonance in Medicine,
vol. 70, no. 3, pp. 800–812, 2013.

[8] J. Ziniel and P. Schniter, “Dynamic compressive sensing of
time-varying signals via approximate message passing,” IEEE
Transaction on Signal Processing, vol. 61, no. 21, pp. 5270–
5284, 2013.

[9] E. Hall and R. Willett, “Dynamical models and tracking regret
in online convex programming,” in Proceedings of the Interna-
tional Conference on Machine Learning, 2013, pp. 579–587.

[10] A. S. Charles, M. S. Asif, J. Romberg, and C. J. Rozell, “Spar-
sity penalties in dynamical system estimation,” Proc of the
CISS, March 2011.

[11] R. Gupta, P. Indyk, and E. Price, “Sparse recovery for earth
mover distance,” in 48th Allerton Conference on Com., Cont.,
and Comp., 2010, pp. 1742–1744.

[12] M. Elad, M. A. T. Figueiredo, and Y. Ma, “On the role of
sparse and redundant representations in image processing,”
IEEE Proc. - Spec, Issue on App. of Compressive Sensing &
Sparse Rep., Oct 2008.

[13] R. Baraniuk, “Compressive sensing,” IEEE Signal Processing
Magazine, vol. 24, no. 4, pp. 118–121, Jul 2007.

[14] R. Tibshirani, “Regression shrinkage and selection via the
lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267–288, 1996.

[15] A. Charles, A. Balavoine, and C. Rozell, “Dynamic filtering of
time-varying sparse signals via `1 minimization,” IEEE Trans-
actions on Signal Processing, vol. 64, no. 21, pp. 5644–5656,
2016.

[16] L. Schmidt, C. Hegde, and P. Indyk, “The constrained earth
mover distance model, with applications to compressive sens-
ing,” in 10th Intl. Conf. on Sampling Theory and Appl.
(SAMPTA), 2013.

[17] D. Mo and M. F. Duarte, “Compressive parameter estima-
tion with earth mover’s distance via k-median clustering,” in
SPIE Optical Engineering+ Applications, 2013, pp. 88 581P–
88 581P.

[18] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming, version 2.1,” http://cvxr.com/cvx, Mar
2014.

[19] ——, “Graph implementations for nonsmooth convex pro-
grams,” in Recent Advances in Learning and Control, ser.
Lecture Notes in Control and Information Sciences, V. Blon-
del, S. Boyd, and H. Kimura, Eds. Springer-Verlag Lim-
ited, 2008—, pp. 95–110, http://stanford.edu/∼boyd/graph
dcp.html.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends R© in
Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.


