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Coarse HSI Measurement Recovery
HSI typically employs a linear mixing model, with each pixel represented as a linear sum Good High-resolution recovery Mean Error (SD) | Median Error (SD) | Mean Error (DD) | Median Error (DD)
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Spectral recovery from coarse HSI Spectral recovery from MSI measurements
Sparsity models may be particularly measurements taken on a different day taken on a different day from the training
effective for HSI, and we expect the learned from the training set set
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The dictionary learning algorithm from Olshausen and Field (1996) is modified for HSI
data. . .
Classification Results
Set 7 = 0.01
Set p =10
Initialize each ¢y to random positive values L ini ion vi
r-cup:c::: each ¢ to random positive valus Vector Quantization (VQ) show that the Sparse.codes retain 1nformat|0n vital to
for i =1 to 200 do coefficient space is informative of classification and gene.rallze. better than raw data
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Learned dictionary elements resemble The manifold structure for water is linearly °
known material spectra approximated by the learned dictionary * -
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Sparsity models and dictionary learning algorithms are valuable for HIS analysis. In particular
: we find that:
i 1) The learned dictionaries closely resemble true material spectra;
" Wovelengtn 2) These dictionaries capture subtleties within classes, locally approximating the
. . . . . . underlying data manifold;
Consistent decompositions are. observed in the spatial dimension 3) Learned dictionaries can be used in a linear inverse setting to super-resolve HSI data
Frogression of Spectra from lower resolution measurements with high accuracy; and
p E 4) Learned dictionaries also provide a powerful representation for classification, producing
£ less complex classifiers and better generalization.
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